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ABSTRACT OF THE DISSERTATION
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by
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Doctor of Philosophy in Statistics

University of California, Los Angeles, 2019

Professor Song-Chun Zhu, Chair

This dissertation proposes new computational frameworks to address three core challenges for

social scene understanding – group activity parsing, human-robot interactions, and perception of

animacy. The goal of these frameworks is to represent the underlying structure of social scenes

and to unify the perception and concept learning of both physics and social behaviors. For this, we

first develop a joint parsing of group activities that yields a hierarchical representations of groups,

events, and human roles, which provides a holistic view of a social scene. In a follow up work,

the idea of joint parsing is also shown to be effective for boosting the performance of deep neural

networks on group activity recognition. Second, we formulate social affordances as a hierarchical

representation of human interactions, which can be learned from a handful of RGB-D videos of

human interactions. Based on the symbolic plans derived from the learned knowledge, we further

design a real-time motion inference to enable motion transfer from human interactions to human-

robot interactions, which generalizes well in unseen social scenarios. Finally, we study human

perception of animacy by designing new approaches to generate Heider-Simmel animations and

by developing new computational models to account for human physical and social perception.

Particularly, we propose a unified framework for modeling physics and social behaviors through i)

a joint physical-social simulation engine, ii) a joint physical and social concept learning as the pur-

suit of generalized coordinates and their potential energy functions, and iii) a unified psychological

space that integrates intuitive physics and intuitive psychology.

ii



The dissertation of Tianmin Shu is approved.

Veronica Santos

Ying Nian Wu

Hongjing Lu

Song-Chun Zhu, Committee Chair

University of California, Los Angeles

2019

iii



To my family.

iv



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Joint Inference of Groups, Events and Human Roles in Aerial Videos . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Scope and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Overview of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Prior Work and Our Contributions . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Representing of Group Events by ST-AOG . . . . . . . . . . . . . . . . . 12

2.2.2 Sub-events as Latent Spatiotemporal Templates . . . . . . . . . . . . . . . 14

2.3 Formulation and Learning of Templates . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Human Role Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 Detection of Latent Sub-events with DP . . . . . . . . . . . . . . . . . . . 20

2.6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 CERN: Confidence-Energy Recurrent Network for Group Activity Recognition . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Components of the CERN Architecture . . . . . . . . . . . . . . . . . . . . . . . 31

v



3.4 Formulation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Formulation of Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Nonconformity Measure and P-values . . . . . . . . . . . . . . . . . . . . 35

3.5.2 Confidence of the Structured Prediction G . . . . . . . . . . . . . . . . . . 36

3.6 The Energy Layer of CERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Learning Regularized By Confidence . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8.1 Collective Activity Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8.2 Volleyball Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Learning Social Affordances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Representation and Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Probabilistic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Outer Loop for Sub-Event Parsing . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Inner Loop for Joint Selection and Grouping . . . . . . . . . . . . . . . . 56

4.5 Motion Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Motion Transfer for Human-Robot Interactions Using Social Affordance Grammar 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.1 Arm Motion Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.2 Relation Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.3 Parsing Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6.1 Atomic Action Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6.2 Joint Sub-Task Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6.3 Constructing ST-AOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Real-time Motion Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7.1 Robot Motion Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7.2 Parse Graph Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8.1 Experiment 1: Baxter Simulation . . . . . . . . . . . . . . . . . . . . . . 80

5.8.2 Experiment 2: Human Evaluation . . . . . . . . . . . . . . . . . . . . . . 82

5.8.3 Experiment 3: Real Baxter Test . . . . . . . . . . . . . . . . . . . . . . . 83

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Perception of Human Interaction in Decontextualized Animations . . . . . . . . . 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.1 Conditional Interactive Fields . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2 Temporal Parsing by Latent Sub-Interactions . . . . . . . . . . . . . . . . 89

vii



6.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Inference and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 Model Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6.1 Training with Aerial Videos . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6.2 Training with Heider-Simmel Videos . . . . . . . . . . . . . . . . . . . . 94

6.6.3 Generalization: Training with Aerial Videos and Testing with Heider-Simmel

Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7.1 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7.3 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.8 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 A Unified Computational Framework for Modeling Physical and Social Events . . 104

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Stimulus Synthesis in Flatland . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2.2 Interaction Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.3 Training Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Unified Physical and Social Concept Learning . . . . . . . . . . . . . . . . . . . . 111

7.3.1 Inspiration from Lagrangian Mechanics . . . . . . . . . . . . . . . . . . . 111

7.3.2 Parsimonious Models from Generalized Coordinates . . . . . . . . . . . . 112

viii



7.3.3 Modular Models and Triggering Conditions . . . . . . . . . . . . . . . . . 113

7.3.4 Goal-oriented Potentials for Social Behaviors . . . . . . . . . . . . . . . . 115

7.3.5 Summary of Main Advantages . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.6 A Sketch of the Learning Algorithm . . . . . . . . . . . . . . . . . . . . . 118

7.3.7 Learning Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3.8 Physics Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.9 Intention Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4.2 Stimuli and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

ix



LIST OF FIGURES

1.1 A coffee shop scene with dense captions generated by a computer vision model (from

[JKF16]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A snapshot of the original Heider-Simmel animation (from [HA04]). . . . . . . . . . . 3

1.3 Planning body movement when opening a door by following necessary social etiquette

(from [HT18]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Our low-resolution aerial videos show top-down views of people engaged in a number

of concurrent events, under camera motion. Different types of challenges are color-

coded. The red box marks a zoomed-in video part with varying dynamics among

people and their roles Deliverer and Receiver in Exchange Box. The green marks

extremely low resolution and shadows. The blue indicates only partially visible Car.

The cyan marks noisy tracking of person and the small object Frisbee. . . . . . . . . . 8

2.2 The main steps of our approach. Our recognition accounts for the temporal layout of

latent sub-events, people’s roles within events (e.g., Guide, Visitor), and small objects

that people interact with (e.g., Box, trash bin). We iteratively optimize groupings of the

foreground trajectories, infer their events and human roles (color-coded tracks) within

events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 A part of ST-AOG for Exchange Box. The nodes are hierarchically connected (solid

blue) into three levels, where the root level corresponds to events, middle level encodes

sub-events, and leaf level is grounded onto foreground tracklets and small static ob-

jects in the video. The lateral connections (dashed blue) indicate temporal relations of

sub-events. The colored pie-chart nodes represent templates of n-ary spatiotemporal

relations among human roles and objects (see Figure 2.4). The magenta edges indi-

cate an inferred parse graph which recognizes and localizes temporal extents of events,

sub-events, human roles and objects in the video. . . . . . . . . . . . . . . . . . . . . 13

x



2.4 Three example templates of n-ary spatiotemporal relations among foreground trajecto-

ries extracted from the video (XYT-space) for the event Exchange Box. The recognized

roles Deliverers, Receivers and the object Box in each template are marked cyan, blue

and purple, respectively. Spatiotemporal templates are depicted as colored pie-chart

nodes in Figure 2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Our DP process can be illustrated by this DAG (directed acyclic graph). An edge

between Lk′a′ and Lka means the transition La′ → La follows the rule defined in ST-

AOG and the time interval [ta′ , ta] is assigned with template La. In this sense, with the

transition rules and the prior defined in Eq. (2.2) (we do not consider the assignment

with low prior probability), we can define the edges of such DAG. So the goal of DP is

equivalent to finding a shortest path between source and sink. The red edges highlight

a possible path. Suppose we find a path source → L8
3 → L20

1 → sink. This means

that we decompose [0, T ] into 2 time intervals: [0, 8δt], [8δt, T ], and they are assigned

with template L3 and L1 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Visualization of results including groups (large bounding boxes), events (text) and

human roles (small bounding boxes with text). In events with more than one role,

we use the shaded bounding box to represent the second role; small portable objects

are labeled with lighter color. From event and human role recognition, we can group

people even when they are far from each other (e.g., Play Frisbee and Sell BBQ). In the

top-rightmost failure example, true event Pick Up is wrongly recognized as Exchange

Box because one person’s trajectory is inferred as Box. In bottom-rightmost failure

example, our event recognition is correct, but true Consultant role is wrongly inferred

as Visitor role. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



2.7 Confusion matrices of event recognition and role assignment result. (a) is event recog-

nition result based on ground-truth (GT) bounding boxes and object labels; (b) is result

based on real tracking and detections. From (a) and (b) we can see that Info Consult,

Sit on Table, Serve Table cannot be easily distinguished from each other solely based

on noisy tracklets. Some events (e.g. Group Tour) tend to be wrongly favored by our

approach, especially when we do not observe some distinguishing objects. (c) is role

assignment result confusion matrix within event class based on ground-truth bounding

boxes and object labels. Each 2 × 2 block is a confusion matrix of role assignment

within that event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Our CERN represents a two-level hierarchy of LSTMs grounded onto human trajec-

tories, where the LSTMs predict individual actions {yi}, human interactions {yij}, or

the event class c in a given video. CERN outputs an optimal configuration of LSTM

predictions which jointly minimizes the energy of the predictions and maximizes their

confidence, for addressing the brittleness of cascaded predictions under uncertainty.

This is realized by extending the two-level hierarchy with an additional energy layer,

which can be trained in an end-to-end fashion. . . . . . . . . . . . . . . . . . . . . . . 28

3.2 (top) An imaginary illustration of the solution space where each circle represents a

candidate solution. The colors and sizes of the circles indicate the energy (red:high,

blue:low) and confidence (the larger the radius the higher confidence) computed by

the energy layer in CERN. A candidate solution Ĝ1 has the minimum energy, but
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CHAPTER 1

Introduction

In the past a few decades, physical scene understanding has been one of the most fundamental areas

in AI research. Thanks to the recent progress, we now can build machines that achieve impres-

sive (sometimes even super human) performance for detecting and recognizing objects [HZR16,

HLV17, HGD17] and their relations [XZC17, JHM17, MGK19], for parsing, reconstructing, and

reasoning 3D scenes [ZZ13, SGS13, HZC13, KLD14, LZZ17, ZLH17, ZCS18, HQZ18, HQX18],

for learning intuitive physics [WYL15, LGF16, WLK17], and for many other aspects of under-

standing physical worlds.

However, understanding physical scenes by no means provides the full picture of modeling and

reasoning the real human world, as humans not only see and reason about the physical objects in

the world (i.e., physical perception), but also watch other humans’ behaviors and try to understand

their minds (i.e., social perception). In fact, as J. J. Gibson argued, “The richest and most elaborate

affordances of the environment are provided by ... other people.” [Gib79] In other words, we

as humans need to understand the behaviors and mental states of other humans for our everyday

activities. This also applies to machine agents (e.g., a service robot) if we want them to interact

with humans, which calls for research on social scene understanding, an under-explored area of AI

research focusing on building machines that are capable of understanding humans’ behaviors and

minds.

Consider the coffee shop scene captured in Figure 1.1. Various physical scene understanding

models can offer us a large amount of details about the objects and their 3D layout in the room. By

running state-of-the-art computer vision models [JKF16], we may even obtain reasonably accurate

text descriptions of the physical properties or attributes of these objects as shown in the figure.

There are also descriptions of simple actions taken by the humans, but they were treated in the
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Figure 1.1: A coffee shop scene with dense captions generated by a computer vision model (from

[JKF16]).

same manner as listing the attributes of objects. However, instead of simply accumulating these

basic facts of this scene, humans usually future infer less obvious information hidden in the image

– e.g., two friends/co-workers are chatting while drinking coffee; a brista is serving an customer

while another customer is waiting in line. Such hidden messages constitute a social understanding

of the observed scene. We can clearly see from this example that different from the extremely

detailed picture drawn by the physical scene understanding, social scene understanding composes

more abstract and high-level descriptions about what we can see.

In addition to the ability of constructing concise and structured interpretation of social scenes

from rich visual information demonstrated in the above example, decades of studies on social

perception reveals that humans can also extract rich social signals from very little input. The most

well-known study is probably [HS44]. In 1940s, two psychologists, Heider and Simmel, created a

short movie of three simple geometric shapes (a big triangle, a small triangle, and a circle) moving

around a box, which is known as the Heider-Simmel animation (Figure 1.2). In their original

experiments, they showed the animation to human subjects and asked them to describe it. Almost

all of the subjects gave an anthropomorphic description – they were able to tell vivid and diverse
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Figure 1.2: A snapshot of the original Heider-Simmel animation (from [HA04]).

Figure 1.3: Planning body movement when opening a door by following necessary social etiquette

(from [HT18]).

stories involving characters with distinct personalities, intents, and relations, even though all they

saw was simple motion of some geometric shapes. In contrast, it is not difficult to imagine that

state-of-the-art computer vision models that can beat humans on recognizing objects (e.g., ResNet

[HZR16]) may only yield the most literal interpretation of this animation (i.e., shapes and their

motion) without developing much meaningful social understanding.

Just like our understanding of the physical world, social scene understanding also helps shape

our behaviors by providing crucial information such as the mental states of other humans which

can not be acquired otherwise. For instance, as a basic social etiquette, we should hold the door if

we predict that someone else is also trying to go through the same door. As shown in Figure 1.3, to

follow this etiquette, we plan our body motion not only by assessing the physical scene (e.g., the

position, size and type of the door), but also by inferring the intents, gender, age, physical strengths,

and other nuanced information of other people. An agent without sufficient social understanding
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of its surrounding environment will surely fail to behave in a socially appropriate way.

Inspired by humans’ remarkable social perception and its critical influence on our behaviors in

the real world, this dissertation aims to study how to build computational models that can construct

interpretable and structured representations of social scenes and how to incorporate such represen-

tations into the decision making process of a robot when interacting with humans. Furthermore,

we also take a deep look into how humans integrate the perception of physical and social scenes,

and how we can develop a joint modeling of physical laws and social behaviors.

In summary, this dissertation studies three core problems in social scene understanding: group

activity parsing, human-robot interactions, and perception of animacy. We summarize the contri-

butions of this dissertation on these three problems as follows.

• Group Activity Parsing. Prior work on social scene understanding in videos has mostly

focused on group activity recognition, which is essentially defined as video recognition –

given a short video clip of human activities, a model predicts the activity label of this clip as

a whole [CSS09, LWY12]. This is clearly far from the true understanding of social scenes.

So what is social scene understanding? What are the fundamental elements in a social scene

that a computational model should reason about? In Chapter 2, we attempt to offer an an-

swer by proposing a new framework for parsing group activities in long videos. Specifically,

we argue that a holistic understanding of social scenes should include a joint inference of

three key elements: i) social groups, ii) events that people in each social group engage in,

and iii) roles of the group members. For this, we propose spatiotemporal AND-OR graph

(ST-AOG), a stochastic grammar model, as a hierarchical representation of the three key

elements to model long-term spatiotemporal patterns in group activities. For evaluation, we

compiled the first aerial event dataset that includes multiple social activities in an open space.

The experimental results suggest that the joint inference of groups, events, and roles results

in a more complete and longer-term understanding of observed social scenes and also im-

proves the parsing accuracy of each individual element. Chapter 3 further incorporates the

joint inference to structured deep neural networks (DNNs) through an energy-based model,

which demonstrates a performance boost compared to the standard feed-forward predictions
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from DNNs. Such advantage is particularly significant when we only have limited training

examples and/or the input is noisy. In fact, this is the first DNN-based model that outper-

forms conventional approaches that rely on hand-crafted features on the Collective Activity

dataset [CSS09].

• Human-Robot Interactions. With the recent progress in robotics, robots now have been

able to perform many complex tasks for humans. As a result, it is inevitable that the robots

will interact with humans in various social situations, such as service robots taking care

of elderly people, robot co-workers collaborating with humans in a workplace, or simply

a robot navigating through human crowds. Similar to human social interactions, human-

robot interactions (HRI) must also follow certain social etiquette or social norms, in order

to make humans comfortable. To this end, we propose the first computational framework

to learn social affordances (i.e., suitable actions to take when interacting with humans in

social activities) from a handful of human interaction videos as demonstrations (Chapter 4).

We then represent the learned social affordances in the form of spatiaotemporal stochastic

grammar, based on which we may generate robot plans to transfer human-human interac-

tions into human-robot interactions (Chapter 5). To our knowledge, this is the first work on

learning transferable knowledge (i.e., social affordances) from observing human interactions

for enabling human-robot social interactions.

• Perception of Animacy. Heider and Simmel’s pioneering work poses many unsolved ques-

tions about human’s perception of animacy: How humans judge whether an entity in Heider-

Simmel animations is an animated agent or a physical object? Do they use ad-hoc visual

cues [DL94, ST00, TF00, TF06, GNS09, GMS10] or do they try to reason about the men-

tal states (intents, desires, beliefs) of agents [BST09, UBM10]? What is the connection

between physical perception (or intuitive physics) and social perception (or intuitive psy-

chology)? Is there a principled way to jointly model both physical perception and social

perception? There have been many research efforts devoted to these questions. However,

so far we haven’t had clear answers to them. This dissertation attempts to address ques-

tions from a computational perspective – designing computational models that account for
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humans’ perception of animacy (Chapter 6 and Chapter 7). In particular, we are interested

in bridging physical perception and social perception in a unified framework. For this, we

propose new approaches for i) automatically generating Heider-Simmel animations with rich

and realistic behaviors by building a joint physical-social simulation engine, for ii) learning

physical and social concepts by a unified paradigm, and for iii) constructing a joint repre-

sentation of human perception of both physical and social events. Through multiple human

experiments, we demonstrate that our unified framework indeed can discover a distribution

of human perception of physical and social events in a unified psychological space, which

sheds light on how to integrate intuitive physics and intuitive psychology.
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CHAPTER 2

Joint Inference of Groups, Events and Human Roles in Aerial

Videos

2.1 Introduction

2.1.1 Motivation and Objective

Video surveillance of large spatial areas using unmanned aerial vehicles (UAVs) becomes increas-

ingly important in a wide range of civil, military and homeland security applications. For ex-

ample, identifying suspicious human activities in aerial videos has the potential of saving human

lives and preventing catastrophic events. Yet, there is scant prior work on aerial video analysis

[KGS13, IRF13, PG14], which for the most part is focused on tracking people and vehicles (with

few exceptions [OMS10]) in relatively sanitized settings.

Towards advancing aerial video understanding, we present a new problem of parsing extremely

low-resolution aerial videos of large spatial areas, such as picnic areas rich with co-occurring group

events, viewed top-down under camera motion, as illustrated in Figure 2.1 and 2.2. Given an aerial

video, our objectives include:

1. Grouping people based on their events;

2. Recognizing events present in each group;

3. Recognizing roles of people involved in these events.

7
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... ...

Figure 2.1: Our low-resolution aerial videos show top-down views of people engaged in a number

of concurrent events, under camera motion. Different types of challenges are color-coded. The red

box marks a zoomed-in video part with varying dynamics among people and their roles Deliverer

and Receiver in Exchange Box. The green marks extremely low resolution and shadows. The blue

indicates only partially visible Car. The cyan marks noisy tracking of person and the small object

Frisbee.
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2.1.2 Scope and Challenges

As illustrated in Figure 2.1, we focus on videos of relatively wide spatial areas (e.g., parks with

parking lots) with interesting terrains, taken on-board of a UAV flying at a large altitude (25m) from

the ground. People in such videos are formed into groups engaged in different events, involving

complex n-ary interactions among themselves (e.g., a Guide leading Tourists in Group Tour), as

well as interactions with objects (e.g., Play Frisbee). Also, people play particular roles in each

event (e.g., Deliverer and Receiver roles in Exchange Box).

1. Low resolution. People and their portable objects are viewed at an extremely low resolution.

Typically, the size of a person is only 15 × 15 pixels in a frame, and small objects critical for

distinguishing one event from another may not be even distinguishable by a human eye.

2. Camera motion makes important cues for event recognition (e.g., object like Car) only

partially visible or even out of view, and thus may require seeing longer video footage for their

reliable detection.

3. Shadows in top view make background subtraction very challenging.

Unfortunately, popular appearance-based approaches to detecting people and objects used to

produce input for recognizing group events and interactions [PES09, CS14, RA11, LSM12, RYF13,

FHR12] do not handle the above three challenges. Thus we have to depart from the appearance-

based event recognition.

In addition, in the face of these challenges, the state of the art methods in people and vehicle

tracking frequently miss to track moving foreground, and typically produce short, broken tracklets

with a high rate of switched track IDs.

4. Space-time dynamics. Our events are characterized by both very large and very small

space-time dynamics within a group of people. For example, in the event of a line forming in

front of a vending machine, called Queue for Vending machine, the participants may be initially

scattered across a large spatial area, and may form the line very slowly, while partially occluding

one another when closely standing in the line.
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Figure 2.2: The main steps of our approach. Our recognition accounts for the temporal layout of

latent sub-events, people’s roles within events (e.g., Guide, Visitor), and small objects that people

interact with (e.g., Box, trash bin). We iteratively optimize groupings of the foreground trajectories,

infer their events and human roles (color-coded tracks) within events.

2.1.3 Overview of Our Approach

As Figure 2.2 illustrates, our approach consists of two main steps:

1. Preprocessing. We ground our approach onto noisy detections and tracking. Foreground

tracking under camera motion is made feasible by registering video frames onto a reference plane.

By frame registration, we generate a panorama for scene labeling. Due to the challenges men-

tioned in Section 2.1.2, tracking of small portable objects and people produces highly unreliable

frequently broken tracklets, with a high miss rate. We improve the initial tracking results by ag-

glomeratively clustering tracklets into longer trajectories based on their spatial layout and velocity.

We detect large objects (e.g.. buildings, cars) using the approach of [RPZ13], and classify super-

pixels [ASS12] of the panorama for scene labeling.

2. Inference. We seek event occurrences in the space-time patterns of the foreground trajec-

tories and their relations with the detections of objects in the scene. To constrain our recognition

hypotheses under uncertainty, we resort to domain knowledge represented by a probabilistic gram-

mar – namely, a spatiotemporal AND-OR graph (ST-AOG). ST-AOG encodes decompositions of

events into temporal sequences of sub-events. Sub-events are defined by our new formalism called

latent spatiotemporal templates of n-ary relations among people and objects. The templates jointly

10



encode varying spatiotemporal relations of characteristic roles of all people, as well as their inter-

actions with objects, while engaged in the event.

We specify an iterative algorithm based on Markov Chain Monte Carlo (MCMC [KL12]) along

with dynamic programming (DP) to jointly infer groups, events and human roles.

2.1.4 Prior Work and Our Contributions

Our work is related to three research streams.

Event Recognition in Aerial Videos. Prior work on aerial image and video understanding

typically puts restrictions on their settings for limited tasks. For example, [PA12] requires robust

motion segmentation and learning of object shapes for tracking objects; [IRF13] recognizes people

based on background subtraction and motion; and [PG14] depends on appearance-based regressor

and background subtraction for tracking vehicles. Regarding the objectives, these approaches

mainly focus on detecting and tracking people or vehicles [XCS10, OMS10, KGS13]. We advance

prior work by relaxing their assumptions about the setting, and by extending their objectives to

jointly infer groups, events, human roles.

Group Activity Recognition. Simultaneous tracking of multiple people, discovering groups

of people, and recognizing their collective activities have been addressed only in every-day videos,

rather than aerial videos [CSS09, RA11, LWY12, GCR12, LPZ13, CS14, CCP14, AO14, SAL14,

TML14]. Also, work on recognizing group activities in large spatial scenes requires high-resolution

videos for a “digital zoom-in” [AXZ12]. As input, these approaches use person detections along

with cues about human appearance, pose, and orientation — i.e., information that cannot be re-

liably extracted from our aerial videos. There are also some trajectory-based methods for event

recognition [NZH03, SHJ14, LXG12], but they focus on simpler events compared to what we dis-

cuss in this chapter. Regarding the representation of collective activities, prior work has used a

descriptor of human locations and orientations, similar to shape-context [CS14, AO14]. We ad-

vance prior work with our new formalism of latent spatiotemporal template of human roles and

their interactions with other actors and objects.

Recognition of Human Roles. Existing work on recognizing social roles and social in-
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teractions of people typically requires perfect tracking results [RYF13], reliable estimation of

face direction and attention in 3D space [FHR12], detection of agent’s feet location in the scene

[ZHY11], and thus are not applicable to our domain. Our approach is related to recent approaches

aimed at jointly recognizing events and social roles by identifying interactions of sub-groups

[GCR12, LPZ13, LSM12, KHH13].

Contributions:

1. Addressing a more challenging setting of aerial videos;

2. New formalism of latent spatiotemporal templates of n-ary relations among human roles and

objects;

3. Efficient inference using dynamic programming aimed at grouping, recognition and localiz-

ing temporal extents of events and human roles

4. New dataset of aerial videos with per-frame annotations of people’s trajectories, object la-

bels, roles, events and groups.

2.2 Representation

2.2.1 Representing of Group Events by ST-AOG

Similar with hierarchical representation in [GSS09, LGL09, PSY13, PR14], domain knowledge

is formalized as ST-AOG, depicted in Figure 2.3. Its nodes represent the following four sets of

concepts: events ∆E = {Ei}; sub-events ∆L = {La}; human roles ∆R = {Rj}; small objects that

people interact with ∆O = {Oj}; and large objects and scene surfaces ∆S = {Sj}. A particular

pattern of foreground trajectories observed in a given time interval gives rise to a sub-event, and a

particular sequence of sub-events defines an event.

Edges of the ST-AOG represent decomposition and temporal relations in the domain. In par-

ticular, the nodes are hierarchically connected by decomposition edges into three levels, where the

root level corresponds to events, middle level encodes sub-events, and leaf level is grounded onto

foreground tracklets and object detections in the video. The nodes of sub-events are also laterally
12



Group events

R1 R2O1 R2R1

SE1

R1 R2O1 R2R1

SE2 SE3 SE5 SE6

R1 R2O1 R2R1 R1 R2O1 R2R1 R1 R2O1 R2R1R1 R2O1 R2R1

SE4

E1: Exchange BoxLeaf node

AND node

OR node

N-ary 
ST-relation

Template

Role
Object

R1
Decompostion 

relations
Temporal 
relations

Parse graph

SE1
E1 Event

Sub event

...E2 En

Deliverers are carrying box 
and receivers are waiting

Deliverers and receivers are 
walking towards each other

Deliverers are waiting 
receivers to get the box

Deliverers and receivers 
are standing together

Deliverers and receivers 
are leaving the scene

Deliverers are leaving and 
receivers stay in the scene

Figure 2.3: A part of ST-AOG for Exchange Box. The nodes are hierarchically connected (solid

blue) into three levels, where the root level corresponds to events, middle level encodes sub-events,

and leaf level is grounded onto foreground tracklets and small static objects in the video. The

lateral connections (dashed blue) indicate temporal relations of sub-events. The colored pie-chart

nodes represent templates of n-ary spatiotemporal relations among human roles and objects (see

Figure 2.4). The magenta edges indicate an inferred parse graph which recognizes and localizes

temporal extents of events, sub-events, human roles and objects in the video.
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connected for capturing “followed-by” temporal relations of sub-events within the corresponding

events.

ST-AOG has special types of nodes. An AND node, ∧, encodes a temporal sequence of latent

sub-events required to occur in the video so as to enable the event occurrence (e.g., in order to

Exchange Box, the Deliverers first need to approach the Receivers, give the Box to the Receivers,

and then leave). For a given event, an OR node, ∨, serves to encode alternative space-time patterns

of distinct sub-events.

2.2.2 Sub-events as Latent Spatiotemporal Templates

A temporal segment of foreground trajectories corresponds to a sub-event. ST-AOG represents

a sub-event as the latent spatiotemporal template of n-ary spatiotemporal relations among fore-

ground trajectories within a time interval, as illustrated in Figure 2.4. In particular, as an event

is unfolding in the video, foreground trajectories form characteristic space-time patterns, which

may not be semantically meaningful. As they frequently occur in the data, they can be robustly

extracted from training videos through unsupervised clustering. Our spatiotemporal templates for-

malize these patterns within the Bayesian framework using unary, pairwise, and n-ary relations

among the foreground trajectories. In addition, our unsupervised learning of spatiotemporal tem-

plates address unstructured events in a unified manner. Namely, more structured events need more

templates and an unstructured one is represented by a single template.

Unary attributes. A foreground trajectory, Γ = [Γ1, ...,Γk, ...], can be viewed as spanning

a number of time intervals, τk = [tk−1, tk], where Γk = Γ(τk). Each trajectory segment, Γk, is

associated with unary attributes, φ = [rk, sk, ck]. Elements of the role indicator vector rk(l) = 1

if Γk belongs to a person with role l ∈ ∆R or object class l ∈ ∆O; otherwise rk(l) = 0. The speed

indicator sk = 1 when the normalized speed of Γk is greater than a threshold (we use 2 pixels/sec);

otherwise, sk = 0. Elements of the closeness indicator vector ck(l) = 1 when Γk is close to any

of the large objects or types of surfaces detected in the scene indexed by l ∈ ∆S, such as Building,

Car, for a threshold (70 pixels); o.w., ck(l) = 0.

Pairwise relations. of a pair of trajectory segments, Γkj and Γkj′ , are aimed at capturing spa-
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Figure 2.4: Three example templates of n-ary spatiotemporal relations among foreground trajec-

tories extracted from the video (XYT-space) for the event Exchange Box. The recognized roles

Deliverers, Receivers and the object Box in each template are marked cyan, blue and purple, re-

spectively. Spatiotemporal templates are depicted as colored pie-chart nodes in Figure 2.3.
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tiotemporal relations of human roles or objects represented by the two trajectories, as illustrated

in Figure 2.4. The pairwise relations are specified as: φjj′ = [dkjj′ , θ
k
jj′ , r

k
jj′ , s

k
jj′ , c

k
jj′ ], where dkjj′

is the mean distance between Γkj and Γkj′; θ
k
jj′ is the angle subtended between Γkj and Γkj′; and

the remaining three pairwise relations check for compatibility between the aforementioned binary

relations as: rkjj′ = rkj ⊕ rkj′ , skjj′ = skj ⊕ skj′ , c
k
jj′ = ckj ⊕ ckj′ , where ⊕ denotes the Kronecker

product.

n-ary relations. Towards encoding unique spatiotemporal patterns of a set of trajectories, we

specify the following n-ary attribute. A set of trajectory segments, Gi(τk) = Gk
i = {Γkj}, can be

described by a 18-bin histogram hk of their velocity vectors. hk counts orientations of velocities

at every point along the trajectories in a polar coordinate system: 6 bins span the orientations

in [0, 2π], and 3 bins encode the locations of trajectory points relative to a given center. As the

polar-coordinate origin, we use the center location of a given event in the scene.

Unsupervised Extraction of Templates. Given training videos with ground-truth partition of

all their ground-truth foreground trajectories G into disjoint subsets G = {Gi}. Every Gi can be

further partitioned into equal-length time intervals Gi = {Gk
i } (|τ k| = 2sec). We use K-means

clustering to group all {Γki,j}, and then estimate spatiotemporal templates {La} as representatives

of the resulting clusters a. For K-means clustering, we use ground-truth values of the aforemen-

tioned unary and pairwise relations of {Γki,j}. In our setting of 11 categories of events occurring in

aerial videos, we estimate |∆L| = 27 templates.

2.3 Formulation and Learning of Templates

Given the spatiotemporal templates, ∆L = {La}, extracted by K-means clustering from train-

ing videos (see Section 2.2.2), we will conduct inference by seeking these latent templates in

foreground trajectories of the new video. To this end, we define the log-likelihood of a set of

foreground trajectories G = {Γj} given La ∈ ∆L as

log p(G|La) ∝
∑
j

w1
a · φj +

∑
jj′

w2
a · φjj′ +w3

a · h,

= wa · [
∑
j

φj,
∑
jj′

φjj′ ,h] = wa ·ψ.
(2.1)
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where the bottom equation of (2.1) formalizes every template as a set of parameterswa = [w1
a,w

2
a,w

3
a]

appropriately weighting the unary, pairwise and n-ary relations ofG,ψ. Recall that our spatiotem-

poral templates are extracted from unit-time segments of foreground trajectories in training. Thus,

the log-likelihood in Eq. (2.1) is defined only for setsG consisting of unit-time trajectory segments.

From Eq. (2.1), the parameters wa can be learned by maximizing the log-likelihood of {ψk
a}

extracted from the corresponding clusters a of training trajectories.

The log-posterior of assigning template La to longer temporal segments of trajectories, falling

in τ = (t′, t), t′ < t, is specified as

log p(La(τ)|G(τ))∝
t∑

k=t′

log p(Gk|La) + log p(La(τ)) (2.2)

where p(La(τ)) is a log-normal prior that La can be assigned to a time interval of length |τ |. The

hyper-parameters of p(La(τ)) are estimated using the MLE on training data.

2.4 Probabilistic Model

A parse graph is an instance of ST-AOG, explaining the event, sequence of sub-events, and human

role and object label assignment. The solution of our video parsing is a set of parse graphs, W =

{pgi}, where every pgi explains a subset of foreground trajectories, Gi ⊂ G, as

pgi = {ei, τi = [ti,0, ti,T ], {L(τi,u)}, {ri,j}}, (2.3)

where ei ∈ ∆E is the recognized event conducted by Gi; τi = [ti,0, ti,T ] is the temporal extent

of ei in the video starting from frame ti,0 and ending at frame ti,T ; {L(τi,u)} are the templates

(i.e., latent sub-events) assigned to non-overlapping, consecutive time intervals τi,u ⊂ τi, such that

|τi| =
∑

u |τi,u|; and ri,j is the human role or object class assignment to jth trajectory Γi,j of Gi.

Our objective is to infer W that maximizes the log-posterior log p(W |G) ∝ −E(W |G), given

all foreground trajectories G extracted from the video. The corresponding energy E(W |G) is

specified for a given partitioning of G into N disjoint subsets Gi as

E(W |G)∝
N∑
i=1

[
− log p(∧ei |∨root)︸ ︷︷ ︸

select event ei

+
∑
u

[
− log p(∧La |∨ei)︸ ︷︷ ︸

select template La

− log p(La(τi,u)|Gi(τi,u))︸ ︷︷ ︸
assign template

]]
(2.4)
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where Gi(τi,u) denotes temporal segments of foreground trajectories falling in time intervals τi,u,

|τi| =
∑

u |τi,u|, and log p(L(τi,u)|Gi(τi,u)) is given by Eq. (2.2). Also, log p(∧ei |∨root) and

log p(∧La |∨ei) are the log-probabilities of the corresponding switching OR nodes in ST-AOG for

selecting particular events ei ∈ ∆E and spatiotemporal templates La ∈ ∆L. These two switch-

ing probabilities are simply estimated as the frequency of corresponding selections observed in

training data.

2.5 Inference

Given an aerial video, we first build a video panorama and extract foreground trajectoriesG. Then,

the goal of inference is to: (1) partition G into disjoint groups of trajectories {Gi} and assign label

event ei ∈ ∆E to every Gi; (2) assign human roles and object labels ri,j to trajectories Γi,j within

each group Gi; and 3) assign latent spatiotemporal templates L(τi,u) ∈ ∆L to temporal segments

τi,u of foreground trajectories within every Gi. For steps (1) and (2) we use two distinct MCMC

processes. Given groups Gi, event labels ei and role assignment ri,j proposed in (1) and (2),

step (3) uses dynamic programming for efficient estimation of sub-events L(τ) and their temporal

extents τ . Steps (1)–(3) are iterated until convergence, i.e., when E(W |G), given by Eq. (2.4),

stops decreasing after a sufficiently large number of iterations.

2.5.1 Grouping

Given G, we first use [GCR12] to perform initial clustering of foreground trajectories into atomic

groups. Then, we apply the first MCMC to iteratively propose either to merge two smaller groups

into a merger, with probability p(1) = 0.7, or to split a merger into two smaller groups, with

probability p(2) = 0.3. Given the proposal, each resulting group Gi is labeled with an event

ei ∈ ∆E (we enumerate all possible labels). In each proposal, the MCMC jumps from current

solution W to a new solution W ′ generated by one of the dynamics. The acceptance rate is α =

min
{

1, Q(W→W ′)p(W ′|G)
Q(W ′→W )p(W |G)

}
, where the proposal distribution Q(W → W ′) is one of p(1) or p(2)

depending on the proposal, and p (W |G) is given by Eq. (2.4).
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Figure 2.5: Our DP process can be illustrated by this DAG (directed acyclic graph). An edge

between Lk′a′ and Lka means the transition La′ → La follows the rule defined in ST-AOG and the

time interval [ta′ , ta] is assigned with template La. In this sense, with the transition rules and the

prior defined in Eq. (2.2) (we do not consider the assignment with low prior probability), we can

define the edges of such DAG. So the goal of DP is equivalent to finding a shortest path between

source and sink. The red edges highlight a possible path. Suppose we find a path source→ L8
3 →

L20
1 → sink. This means that we decompose [0, T ] into 2 time intervals: [0, 8δt], [8δt, T ], and they

are assigned with template L3 and L1 respectively.

2.5.2 Human Role Assignment

Given a partitioning of G into groups {Gi} and their event labels {ei}, we use the second MCMC

process within every Gi to assign human roles and object labels to trajectories. Each trajectory

Γi,j in Gi is randomly assigned with an initial human-role/object label ri,j for solution pgi. In

each iteration, we randomly select Γi,j and change it’s role label to generate a new proposal pg′i.

The acceptance rate is α = min
{

1,
Q(pgi→pg′i)p(pg′i|Gi)
Q(pg′i→pgi)p(pgi|Gi)

}
, where Q(pgi→pg′i)

Q(pg′i→pgi)
= 1 and p (pg′i|Gi) is

maximized by dynamic programming specified in the next section 2.5.3.
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2.5.3 Detection of Latent Sub-events with DP

From steps (1) and (2), we have obtained the trajectory groups {Gi}, and their event {ei} and role

labels {ri,j}. Every Gi can be viewed as occupying time interval of τi = [ti,0, ti,T ]. The results

of steps (1) and (2) are jointly used with detections of large objects {Si} to estimate all unary,

pairwise, and n-ary relations ψi of every Gi. Then, we apply dynamic programming for every Gi

in order to find latent templates L(τi,u) ∈ ∆L and their optimal durations τi,u ⊂ [ti,0, ti,T ]. In the

sequel, we drop notion i for the group, for simplicity.

The optimal assignment of sub-events can be formulated using a graph, shown in Figure 2.5.

To this end, we partition [t0, tT ] into equal-length time intervals {[tk−1, tk]}, where tk − tk−1 = δt,

δt = 2sec. Nodes Lka in the graph represent the assignment of templates La ∈ ∆L to the intervals

[tk−1, tk]. The graph also has the source and sink nodes.

Directed edges in the graph are established only between nodes Lk′a and Lka, 1 ≤ k′ < k, to

denote a possible assignment of the very same template La to the temporal sequence [tk′ , tk]. The

directed edges are assigned weights (a.k.a. belief messages), m(Lk
′
a , L

k
a), defined as

m(Lk
′

a , L
k
a) = log p(La(tk′ , tk)|Gi(tk′ , tk)), (2.5)

where log p(La(tk′ , tk)|Gi(tk′ , tk)) is given by Eq. (2.2). Consequently, the belief of node Lka is

defined as

b(Lka) = max
k′,a′

b(Lk
′

a′) +m(Lk
′

a , L
k
a). [Forward pass] (2.6)

Here b(L0
a) = 0. We compute the optimal assignment of latent sub-events using the above

graph in two passes. In the forward pass, we compute the beliefs of all nodes in the graph using

Eq. (2.6). Then, in the backward pass, we backtrace the optimal path between the sink and source

nodes, in the following steps:

0: Let tk ← tT ;

1: Find the optimal sub-event assignment at time tk as Lka∗ = arg maxa b(L
k
a); let a← a∗;

2: Find the best time moment in the past tk∗ , k∗<k, and its best sub-event assignment as Lk∗a∗ =

maxa′,k′ b(L
k′

a′)+m(Lk
′
a , L

k
a); Let a←a∗ and k←k∗.

3: If tk > t0, go to Step 2.
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2.6 Experiment

Existing Datasets. Existing datasets on aerial videos, group events or human roles are inappropri-

ate for our evaluation. These aerial videos or images indeed show some group events, but the events

are not annotated ([ARS07, OMS10, Oh11]). Most aerial datasets are compiled for tracking evalua-

tion only [KGS13, IRF13, PG14]. Existing group-activity videos [CSS09, RA11, AXZ12, LPZ13]

or social role videos [ZHY11, FHR12, LSM12, RYF13, KHH13] are captured on or near the

ground surface, and have sufficiently high resolution for robust people detection. Thus, we have

prepared and released a new aerial video dataset 1 with the new challenges listed in Section 2.1.2.

Aerial Events Dataset. A hex-rotor with a GoPro camera was used to shoot aerial videos

at altitude of 25 meters from the ground. The videos show two different scenes, viewed top-

down from the flying hex-rotor. The dataset contains 27 videos, 86 minutes, 60 fps, resolution of

1920× 1080, with about 15 actors in each video. All video frames are registered onto a reference

plane of the video panorama. Annotations are provided ([VPR13]) as: bounding boxes around

groupings of people, events, human roles, and small and large objects. The objects include: 1.

Building, 2. Vending Machine, 3. Table & Seat, 4. BBQ Oven, 5. Trash Bin, 6. Shelter, 7. Info

Booth, 8. Box, 9. Frisbee, 10. Car, 11. Desk, 12. Blanket. The events include: 1. Play Frisbee, 2.

Serve Table, 3. Sell BBQ, 4. Info Consult, 5. Exchange Box, 6. Pick Up, 7. Queue for Vending

Machine, 8. Group Tour, 9. Throw Trash, 10. Sit on Table, 11. Picnic. The human roles include:

1. Player, 2. Waiter, 3. Customer, 4. Chef, 5. Buyer, 6. Consultant, 7. Visitor, 8. Deliverer, 9.

Receiver, 10. Driver, 11. Queuing Person, 13. Guide, 14. Tourist, 15. Trash Thrower, 16. Picnic

Person.

Evaluation Metrics. We split the 27 videos into 3 sets, such that different event categories are

evenly distributed, and use a three-fold cross validation for our evaluation. Although our training

and test videos show the same two scenes, we make the assumption that the layout of ground

surfaces and large objects is unknown. Also, different videos in our dataset cover different parts of

these large scenes, which are also assumed unknown. We evaluate accuracy of: i) grouping people,

ii) event recognition, iii) role assignment. While our approach also estimates sub-events, note that

1Dataset can be downloaded from https://tshu.io/AerialVideo/AerialVideo.html.
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they are latent and not annotated. The results are all time-averaged with the lengths of trajectories

in each video. For specifying evaluation metrics we use the following notation. G = {Gi} and

G′ = {G′i} are the sets of groups in ground-truth and inference results respectively. Γij is the jth

trajectory in ith group in ground-truth data, with duration of |τij|, group label gij , event type eij and

human role rij in ground-truth. So is Γ′ij in our inference. For group Gi, we call the best matched

(i.e. overlapped) group in G′ as Mi. For group G′i, we call the best match group in G as M ′
i . Then,

precision and recall of grouping are

Prg =
∑
Gi∈G

( ∑
Γij∈Gi

1
(
Mi = g′ij

)
· |τij|/

∑
Γij∈Gi

|τij|
)

(2.7)

Rcg =
∑
G′i∈G′

( ∑
Γ′ij∈G′i

1 (M ′
i = gij) · |τ ′ij|/

∑
Γ′ij∈G′i

|τ ′ij|
)

(2.8)

Accuracy of grouping is Fg = 2
/

(1/Prg + 1/Rcg).

Event recognition accuracy Ee and role assignment accuracy Er are defined as

Ee =
∑
G′i∈G′

( ∑
Γ′ij∈G′i

1
(
eij = e′ij

)
· |τij|

)
/
∑
G′i∈G′

∑
Γ′ij∈G′i

|τij| (2.9)

Er =
∑
G′i∈G′

( ∑
Γ′ij∈G′i

1
(
rij = r′ij

)
· |τij|

)
/
∑
G′i∈G′

∑
Γ′ij∈G′i

|τij|. (2.10)

Baselines. To evaluate effectiveness of each module of our approach, we compare with base-

lines and variants of our method defined in Table 2.1. For the baselines we extract the following

low-level features on trajectories: shape-context like feature [CSS09], average velocity, aligned

orientation, distance from each type of large objects. All elements of feature vectors are normal-

ized to fall in [0, 1].

Results. We register raw videos by RANSAC over Harris Corner feature points, then apply

method of [IRF13] for tracking, which is based on background subtraction [YO07, Sob13]. We

also use the detector of [RPZ13] to detect buildings and cars, while other static objects are inferred

in scene labeling. We do not detect portable objects, e.g., Frisbee and Box.

We evaluate our approach on both annotated bounding boxes and real tracking results. Example

qualitative results are presented in Figure 2.6. As can be seen, the results are reasonably good.
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Figure 2.6: Visualization of results including groups (large bounding boxes), events (text) and

human roles (small bounding boxes with text). In events with more than one role, we use the

shaded bounding box to represent the second role; small portable objects are labeled with lighter

color. From event and human role recognition, we can group people even when they are far from

each other (e.g., Play Frisbee and Sell BBQ). In the top-rightmost failure example, true event Pick

Up is wrongly recognized as Exchange Box because one person’s trajectory is inferred as Box.

In bottom-rightmost failure example, our event recognition is correct, but true Consultant role is

wrongly inferred as Visitor role.
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(a) event recognition on GT (b) event recognition on tracking result

(c) role assignment on GT

Figure 2.7: Confusion matrices of event recognition and role assignment result. (a) is event recog-

nition result based on ground-truth (GT) bounding boxes and object labels; (b) is result based on

real tracking and detections. From (a) and (b) we can see that Info Consult, Sit on Table, Serve

Table cannot be easily distinguished from each other solely based on noisy tracklets. Some events

(e.g. Group Tour) tend to be wrongly favored by our approach, especially when we do not observe

some distinguishing objects. (c) is role assignment result confusion matrix within event class based

on ground-truth bounding boxes and object labels. Each 2× 2 block is a confusion matrix of role

assignment within that event.

24



Table 2.1: Comparison of our method with baseline methods and variants of our approach. Our

method yields best accuracy based on ground-truth bounding boxes and object labels compared to

the baseline methods. Using noisy tracking and object detection results, the accuracy is limited,

yet better than the baseline methods under the same condition. This demonstrates the advantages

of our joint inference. When given access to the ground-truth of objects or people grouping, our

results improve. Without reasoning about latent sub-events, accuracy drops significantly, which

justifies our model’s ability to capture the structural variations of group events.

Method Input setting Group Event Role

Baseline Var [GCR12] for grouping, [CS14] for event and role GT tracks + object annotation 77.71% 17.22% 13.98%

Baseline Baseline method as above. Tracking result 39.64% 16.94% 5.53%

Ours Var1 Our full model GT tracks + object annotation 95.48% 96.38% 89.94%

Ours Var2 Our full model Tracking result + object annotation 87.55% 54.75% 28.86%

Ours Var3 Our full model Tracking result + group labeling N/A 39.92% 18.71%

Ours Var4 Ours w/o temporal event grammar Tracking result 40.41% 18.51% 8.69%

Ours Our full model Tracking result 49.47% 32.84% 18.92%

The quantitative results are shown in Table 2.1. Confusion matrices of event recognition and

role assignment are shown in Figure 2.7. Additional results are presented in the supplementary

material2.

2.7 Conclusion

We collected a new aerial video dataset with detailed annotations, which presents new challenges

to computer vision and complements existing benchmarks. We specified a framework for joint

inference of events, human roles and people groupings using noisy input. Our experiments showed

that addressing each of these inference tasks in isolation is very difficult in aerial videos, and

thus provided justification for our holistic framework. Our results demonstrated significant per-

formance improvements over baselines when we constrained uncertainty in input features with

domain knowledge.

2The supplementary material is available at https://tshu.io/AerialVideo/Aerial Video Supp.pdf
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Our model is limited and can be extended in two directions. First, we infer the function of

the objects implicitly based on the group events currently. In the future, we wish to explicitly

infer the functional map for a given site, in the sense that certain area corresponds to specific

human activities, e.g., dinning area, parking lot, etc. Unlike appearance-based aerial image parsing

[PWZ10], the spatial segmentation will be guided by the spatiotemporal characteristics of human

activities. Second, similar to what [XTZ13] did for the prediction of individual intention, we would

like to reason the intention of a group as another extension of our work.
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CHAPTER 3

CERN: Confidence-Energy Recurrent Network for Group

Activity Recognition

3.1 Introduction

In Chapter 2, we have developed a joint inference approach based on a stochastic grammar model,

which requires hand-crafted spatiotemporal features. In this chapter, we extend the joint inference

to deep neural networks, which can learn these features automatically and potentially achieve a

better performance. In particular, the goal of the joint inference is to recognize the overall event

of a group of people as well as their individual actions and/or interactions. We leave the grouping

inference for future work.

Recent deep architectures [IMD16, RHA16], representing a multi-level cascade of Long Short-

Term Memory (LSTM) networks [HS97], have shown great promise in recognizing video events.

In these approaches, the LSTMs at the bottom layer are grounded onto individual human trajecto-

ries, initially obtained from tracking. These LSTMs are aimed at extracting deep visual representa-

tions and predicting individual actions of the respective human trajectories. Outputs of the bottom

LSTMs are forwarded to a higher-level LSTM for predicting events. All predictions are made in

a feed-forward way using the softmax layer at each LSTM. Such a hierarchy of LSTMs is trained

end-to-end using backpropagation-through-time of the cross-entropy loss.

Motivated by the success of these approaches, we start off with a similar two-level hierarchy of

LSTMs for recognizing individual actions, interactions, and events. We extend this hierarchy for

producing more reliable and accurate predictions in the face of the uncertainty of the visual input.

Ideally, the aforementioned cascade should be learned to overcome uncertainty in a given do-
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Actions: {yi}

Event: c

Minimize Energy
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time!
Figure 3.1: Our CERN represents a two-level hierarchy of LSTMs grounded onto human trajec-

tories, where the LSTMs predict individual actions {yi}, human interactions {yij}, or the event

class c in a given video. CERN outputs an optimal configuration of LSTM predictions which

jointly minimizes the energy of the predictions and maximizes their confidence, for addressing the

brittleness of cascaded predictions under uncertainty. This is realized by extending the two-level

hierarchy with an additional energy layer, which can be trained in an end-to-end fashion.

main (e.g., occlusion, dynamic background clutter). However, our empirical evaluation suggests

that existing benchmark datasets (e.g., the Collective Activity dataset [CSS09] and the Volleyball

dataset [IMD16]) are relatively too small for a robust training of all LSTMs in the cascade. Hence,

in cases that have not been seen in the training data, we observe that the feed-forwarding of predic-

tions is typically too brittle, as errors made at the bottom level are directly propagated to the higher

level. One way to address this challenge is to augment the training set. But it may not be practical

as collecting and annotating group activities is usually difficult.

As shown in Figure 3.1, we take another two-pronged strategy toward more robust activity

recognition that includes:

1. Minimizing energy of all our predictions at the different semantic levels considered, and

2. Maximizing confidence (reliability) of the predictions.
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Hence the name of our approach – Confidence-Energy Recurrent Network (CERN).

Our first contribution is aimed at mitigating the brittleness of the direct cascading of predictions

in previous work. We specify an energy function for capturing dependencies between all LSTM

predictions within CERN, and in this way enable recognition by energy minimization. Specifically,

we extend the aforementioned two-layer hierarchy of LSTMs with an additional energy layer (EL)

for estimating the energy of our predictions. The EL replaces the common softmax layer at the

output of LSTMs. Importantly, this extension allows for a robust, energy-based, and end-to-end

training of the EL layer on top of all LSTMs in CERN.

Our second contribution is aimed at improving the numerical stability of CERN’s predictions

under perturbations in the input, and resolving ambiguous cases with multiple similar-valued local

minima. Instead of directly minimizing the energy, we consider more reliable solutions, as illus-

trated in Figure 3.2. The reliability or confidence of solutions is formalized using the classical

tool of a statistical hypothesis test [Fis50] – namely, p-values of the corresponding LSTM’s hy-

potheses (i.e., class predictions). Thus, we seek more confident solutions by regularizing energy

minimization with constraints on the p-values. This effectively amounts to a joint maximization of

confidence and minimization of energy of CERN outputs. Therefore, we specify the EL to estimate

the minimum energy with certain confidence constraints, rather than just the energy.

We also use the energy regularized by p-values for robust deep learning. Specifically, we

formulate an energy-based loss which not only accounts for the energy but also the p-values of

CERN predictions on the training data.

Our evaluation on the Collective Activity [CSS09] and Volleyball [IMD16] datasets demon-

strates: (i) advantages of the above contributions compared with the common softmax and energy-

based formulations and (ii) a superior performance relative to the state-of-the-art methods.

In the following, Section 3.2 reviews prior work, Section 3.3 specifies CERN, Section 3.4 and 3.5

formulate the energy and confidence, Section 3.6 describes the energy layer, Section 3.7 specifies

our learning, and finally Section 3.8 presents our results.
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Ĝ1 = arg min

G
E(G)

INFERENCE
CONSTRAINED
BY P-VALUES

minimizing energy and maximizing confidence
Ĝ2 = arg min

G
E(G)� log p-val(G)

Loss = L(E(G⇤), E(Ĝ), p-val(Ĝ))

LEARNING
REGULARIZED
BY P-VALUES

backpropagation in time

CERN

E(Ĝ1)

E(Ĝ2)

solution space

Figure 3.2: (top) An imaginary illustration of the solution space where each circle represents a

candidate solution. The colors and sizes of the circles indicate the energy (red:high, blue:low) and

confidence (the larger the radius the higher confidence) computed by the energy layer in CERN. A

candidate solution Ĝ1 has the minimum energy, but seems numerically unstable for small pertur-

bations in input. A joint maximization of confidence and minimization of energy gives a different,

more confident solution Ĝ2. Confidence is specified in terms of p-values of the energy potentials.

(bottom) We formulate an energy-based loss for end-to-end learning of CERN. The loss accounts

for the energy and p-values.

3.2 Related Work

Group activity recognition using DNNs. Previous work typically used graphical models [LSM12,

LWY12, RYF13, ALT14, CCP14] or AND-OR grammar models [AXZ12, SXR15] to learn the

structures grounded on hand-crafted features. Recent methods learn a graphical model, typically

MRF [CSY15, WLT16] or CRF [ZJR15, JZS16, LSF16], using recurrent neural networks (RNNs).

Also, work on group activity recognition [IMD16, DVH16] has demonstrated many advantages of

using deep architectures of RNNs over the mentioned non-deep approaches. Our approach extends

this work by replacing the RNN’s softmax layer with a new energy layer, and by specifying a new
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energy-based model that takes into account p-values of the network’s predictions.

Energy-based learning. While energy-based formulations of inference and learning are com-

mon in non-deep group activity recognition [RYF13, ALT14, CCP14, SXR15], they are seldom

used for deep architectures. Recently, a few approaches have tried to learn an energy-based

model [LH05, LCH06] using deep neural networks [BM16, ZML16]. They have demonstrated

that energy-based objectives have great potential in improving the performance of structured pre-

dictions, especially when training data are limited. Our approach extends this work by regularizing

the energy-based objective such that it additionally accounts for the confidence of predictions.

Reliability of Recognition. Most energy-based models in computer vision have only focused

on the energy minimization for various recognition problems. Our approach additionally esti-

mates and regularizes inference with p-values. The p-values are specified within the framework

of conformal prediction [SV08]. This allows the selection of more reliable and numerically stable

predictions.

3.3 Components of the CERN Architecture

For recognizing events, interactions, and individual actions, we use a deep architecture of LSTMs,

called CERN, shown in Figure 3.3. CERN is similar to the deep networks presented in [IMD16,

JZS16], and can be viewed as a graph G = 〈V,E, c, Y 〉, where V = {i} is the set of nodes

corresponding to individual human trajectories, and E = {(i, j)} is the set of edges corresponding

to pairs of human trajectories. These human trajectories are extracted using an off-the-shelf tracker

[DHK14]. Also, c ∈ {1, · · · , C} denotes an event class (or group activity), and Y = Y V ∪ Y E

is the union set of individual action classes Y V = {yi : yi ∈ YV } and human interaction classes

Y E = {yij : yij ∈ YE} associated with nodes and edges.

In CERN, we assign an LSTM to every node and edge in G. All the node LSTMs share the

same weights and all the edge LSTMs also have the same weights. These LSTMs use convolutional

neural networks (CNNs) to compute deep features of the corresponding human trajectories, and

output softmax distributions of individual action classes, ψV (xi, yi), or softmax distributions of

human interaction classes, ψE(xij, yij). The LSTM outputs are then forwarded to an energy layer
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Figure 3.3: We specify and evaluate two versions of CERN. CERN is a deep architecture of

LSTMs, which are grounded via CNNs to video frames at the bottom. The LSTMs forward their

class predictions to the energy layer (EL) at the top. CERN-1 has LSTMs only at the bottom level

which compute distributions of individual action classes (colored boxes) or distributions of interac-

tion classes (colored links between green boxes). CERN-2 has an additional LSTM for computing

the distribution of event (or group activity) classes. The EL takes the LSTM outputs, and infers

an energy minimum with the maximum confidence. The figure shows that CERN-1 and CERN-2

give different results for the group activity crossing. CERN-1 wrongly predicts walking. CERN-2

typically yields better results for group activities that can not be defined only by individual actions.
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(EL) in CERN for computing the energy E(G). Finally, CERN outputs a structured prediction Ĝ

whose energy has a high confidence:

Ĝ = arg min
G
E(G)− log p-val(G). (3.1)

As shown in Figure 3.3, we specify and evaluate two versions of CERN. CERN-1 uses LSTMs

for predicting individual actions and interactions, whereas the event class is predicted by the EL as

in Eq. (3.1). CERN-2 has an additional event LSTM which takes features maxpooled from the out-

puts of the node and edge LSTMs, and then computes the distribution of event classes, ψ(c). The

EL in CERN-2 takes all three types of class distributions as input – specifically, {ψV (xi, yi)}i∈V ,

{ψE(xij, yij)}(i,j)∈E , and ψ(c) – and predicts an optimal class assignment as in Eq. (3.1).

In the following, we specify E(G) and p-val(G).

3.4 Formulation of Energy

For CERN-1, the energy of G is defined as

E(G) ∝
∑
i∈V

wVc,yiψ
V (xi, yi) node potential

+
∑

(i,j)∈E

wEc,yijψ
E(xij, yij) edge potential,

(3.2)

where wVc,yi and wEc,yij are parameters, ψV (xi, yi) denotes the softmax output of the corresponding

node LSTM, and ψE(xij, yij) denotes the softmax output of the corresponding edge LSTM (see

Section 3.3), and xi and xij denote visual cues extracted from respective human trajectories by a

CNN as in [DVH16, IMD16].

For CERN-2, the energy in Eq. (3.2) is augmented by the softmax output of the event LSTM,

i.e.,

E(G) ∝
∑
i∈V

wVc,yiψ
V (xi, yi) node potential

+
∑

(i,j)∈E

wEc,yij ψ
E(xij, yij) edge potential

+ wcψ(x, c) event potential,

(3.3)
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↵V (1)

class 1 in V0(c)

↵V (2)

class 2 in V0(c)

↵

Figure 3.4: A simple illustration of the relationship between the nonconformity measure α of

individual actions and the p-value, where the ratio of the dashed region to the whole area under

the curve indicates the p-value. Clearly, for the given instance, action class 2 has a larger softmax

output but action class 1 has a higher confidence. V0(c) is the training set of videos showing event

c.

where x in ψ(x, c) is the visual representation of all actions and interactions maxpooled from the

outputs of the node LSTMs and edge LSTMs.

3.5 Formulation of Confidence

There are several well-studied ways to define the p-values [Fis50]. In this chapter, we follow the

framework of conformal prediction [SV08]. Conformal prediction uses a nonconformity (dissim-

ilarity) measure to estimate the extent to which a new prediction is different from the system’s

predictions made during training. Hence, it provides a formalism to estimate the confidence of

new predictions based on the past experience on the training data. Below, we define the non-

conformity measure, which is used to compute the p-values for LSTMs’ predictions of individual

actions, interactions, and events.
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3.5.1 Nonconformity Measure and P-values

Given the node potential ψV (xi, yi), we define a nonconformity measure for action predictions:

αV (yi) = 1− ψV (xi, yi)∑
y∈YV ψ

V (xi, y)
= 1− ψV (xi, yi), (3.4)

where the above derivation step holds because ψV (xi, yi) is the softmax output normalized over

action classes. αV (yi) is used to estimate the p-value of predicting action class yi under the context

of event class c as

pVi (c, yi) =

∑
i′∈V0(c) 1(yi′ = yi)1(αV (yi′) ≥ αV (yi))∑

i′∈V0(c) 1(yi′ = yi)
. (3.5)

where 1(·) is the indicator, and V0(c) denotes the set of all human trajectories in training videos

with ground truth labels yi′ and belonging to the ground truth event class c. From Eq. (3.5), the

LSTM prediction ψV (xi, yi) is reliable – i.e., has a high p-value – when many training examples i′

of the same class have larger nonconformity measures.

To better understand the relationship between the nonconformity measure and the p-value,

let us consider a simple case illustrated in Figure 3.4. The figure plots the two distributions of

nonconformity measures of two action classes in the training examples (green: class 1, red: class

2). Suppose that we observe a new instance whose softmax output indicates that action class 2 has

a higher probability to be the true label, i.e., ψV (xi, 1) < ψV (xi, 2), and αV (1) > αV (2). From the

two curves, however, we see that this softmax output is very likely to be wrong. This is because

from Figure 3.4 we have the p-values pVi (c, 1) > pVi (c, 2), since a majority of training examples

with the class 1 label have larger nonconformity measures than αV (1), and hence class 1 is a more

confident solution.

Similarly, given the softmax output of the edge LSTM, ψE(xij, yij), we specify a nonconfor-

mity measure of predicting interaction classes:

αEij(yij) = 1− ψE(xij, yij)∑
y∈YE ψ

E(xij, y)
= 1− ψE(xij, yij), (3.6)

which is then used to estimate the p-value of predicting interaction class yij under the context of
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event class c as
pEij(c, yij)

=

∑
(i′,j′)∈E0(c) 1(yi′j′ = yij)1(αEi′j′(yi′j′) ≥ αEij(yij))∑

(i′,j′)∈E0(c) 1(yi′j′ = yij)
,

(3.7)

where E0(c) denotes the set of all pairs of human trajectories in training videos with ground truth

labels yi′j′ and belonging to the ground truth event class c. From Eq. (3.7), the LSTM prediction

ψE(xij, yij) has a high p-value when many training examples (i′, j′) in E0(c) have larger noncon-

formity measures.

Finally, in CERN-2, we also have the LSTM softmax output ψ(x, c), which is used to define a

nonconformity measure for event predictions:

α(c) = 1− ψ(x, c)∑
c∈C ψ(x, c)

= 1− ψ(x, c), (3.8)

and the p-value of predicting event class c as

p(c) =

∑
v∈V0 1(cv = c)1(α(cv) ≥ α(c))∑

v∈V0 1(cv = c)
. (3.9)

where V0 denotes the set of all training videos.

3.5.2 Confidence of the Structured Prediction G

To define the statistical significance of the hypothesis G among other hypotheses (i.e., possible so-

lutions), we need to combine the p-values of predictions assigned to nodes, edges and the event of

G. More rigorously, for specifying the p-value of a compound statistical test, p-val(G), consisting

of multiple hypotheses, we follow the Fisher’s combined hypothesis test [Fis50]. The Fisher’s the-

ory states that N independent hypothesis tests, whose p-values are p1, · · · pN , can be characterized

by a test statistic χ2
2N as

χ2
2N = −2

N∑
n=1

log pn, (3.10)

where the statistic χ2
2N is proved to follow the χ2 probability distribution with 2N degrees of

freedom. From Eq. (3.10), it follows that minimization of the statistic χ2
2N will yield the maximum

p-value characterizing the Fisher’s combined hypothesis test.

In the following section, we will use this theoretical result to specify the energy layer of our

CERN.
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3.6 The Energy Layer of CERN

We extend the deep architecture of LSTMs with an additional energy layer (EL) aimed at jointly

minimizing the energy, given by Eq. (3.3), and maximizing a p-value of the Fisher’s combined

hypothesis test, given by Eq. (3.10). For CERN-2, this optimization problem can be expressed as

min
c,Y

E(G)

s.t. −∑i∈V ′ log pVi (c, yi) ≤ τV ,

−∑(i,j)∈E′ log pEij(c, yij) ≤ τE,

− log p(c) < τ c,

(3.11)

where τV , τE , and τ c are parameters that impose lower-bound constraints on the p-values. Recall

that according to the Fisher’s theory on a combined hypothesis test, decreasing the constraint

parameters τV , τE , and τ c will enforce higher p-values of the solution.

From Eq. (3.3) and Eq. (3.11), we derive the following Lagrangian, also referred to as regular-

ized energy Ẽ(X, Y, c), which can then be readily implemented as the EL:

Ẽ(X, Y, c) =
∑
i∈V

wVc,yiψ
V (xi, yi)−λV

∑
i∈V

log pVi (c, yi)

+
∑

(i,j)∈E w
E
c,yij

ψE(xij, yij)−λE
∑

(i,j)∈E log pEij(c, yij)

+wcψ(x, c)− λ log p(c),

(3.12)

Note that for CERN-1, we drop the last two terms in Eq. (3.12), wcψc and λ log p(c). Ẽ(X, Y, c)

can be expressed in a more compact form as

Ẽ(X, Y, c) = wV
c
>
ψV − λV > logpVc

+wE
c
>
ψE − λEc

>
logpEc

+wcψc − λ log pc,

(3.13)

where all parameters, potentials, and p-values are grouped into corresponding vectors. Specifically,

parameters of the EL are grouped into {wc}c=1,··· ,C , λ, and the following parameter vectors:

wV
c =

[
wVc,1, · · · , wc,|YV |

]>
, wE

c =
[
wEc,1, · · · , wc,|YE |

]>
,

λV =
[
λV , · · · , λV

]>
, λE =

[
λE, · · · , λE

]>
,

(3.14)

37



and the input to the EL is specified in terms of the LSTM softmax outputs and p-values:

ψV =
[ ∑
i:yi=1

ψV (xi, yi), · · · ,
∑

i:yi=|YV |

ψV (xi, yi)
]>
,

ψE =
[ ∑

(i,j):
yij=1

ψE(xij, yij), · · · ,
∑
(i,j):

yij=|YE |

ψE(xij, yij)
]>
,

ψc = ψ(x, c),

pVc =
[ ∑
i:yi=1

pVi (c, yi), · · · ,
∑

i:yi=|YV |

pVi (c, yi)
]>
,

pEc =
[ ∑

(i,j):yij=1

pVij(c, yi), · · · ,
∑

(i,j):yij=|YE |

pVij(c, yi)
]>
,

pc = p(c).

(3.15)

Figure 3.5a shows a unit in the EL which computes Eq. (3.13). After stacking these units, as

shown in Figure 3.5b, we select the solution Ĝ with the minimum Ẽ(Ĝ).

In the following, we explain our energy-based end-to-end training of the EL.

3.7 Learning Regularized By Confidence

Following [LCH06, BM16], we use an energy-based loss for a training instance X i and its ground

truth labels (Y i, ci) to learn parameters of the EL, i.e., the regularized energy, specified in Eq. (3.12):

L(X i, Y i, ci) = max
(

0, Ẽ(X i, Y i, ci)− Ẽ(X i, Ȳ , c̄) + 1(ci 6= c̄)
)
, (3.16)

where Ȳ , c̄ = argminY,c 6=ci Ẽ(X i, Y, c) − 1(ci 6= c) is the most violated case. Alternatively, this

loss can be replaced by other energy-based loss functions also considered in [LCH06]. Here we

treat Y as latent variables for simplicity and thus only consider accuracy of c. However, one can

include a comparison between Y and its corresponding ground truth label Y i into the loss function.

It is usually difficult to find the most violated case. However, as [LH05] points out, the inference

of the most violated case does not require a global minimum solution since the normalization term

is not modeled in our energy-based model, so we can simply set Ȳ to be the output of the node and

edge LSTMs.

In practice, one can first train a network using common losses such as cross-entropy to learn the
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(b) Diagram of all units in the energy layer.

Figure 3.5: The EL takes the softmax outputs of all LSTMs along with estimated p-values as input,

and outputs a solution that jointly minimizes the energy and maximizes a p-value of the Fisher’s

combined hypothesis test.

representation excluding the EL, namely from the input layer to softmax layers. Then the p-value

of a training instance can be computed by removing itself from the training sets V0 and E0. Finally

we train the weights in Eq. (3.12) by minimizing the loss.

3.8 Results

Implementation details. We stack the node LSTMs and edge LSTMs on top of a VGG-16 model

[SZ14] without the FC-1000 layer. The VGG-16 is pre-trained on ImageNet [DDS09], and fine-
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tuned with LSTMs jointly. We train the top layer of CERN by fixing the weights of the CNNs and

the bottom layer LSTMs. The batch size for the joint training of the bottom LSTMs and VGG-16

is 6. The training converges within 20000 iterations. The event LSTM and the EL are trained

using 10000 iterations with a batch size of 2000. For the mini-batch gradient descent, we use

RMSprop [TH] with a learning rate ranging from 0.000001 to 0.001. We use Keras [Cho15] with

Theano [The16] as the backend to implement CERN, and run training and testing with a single

NVIDIA Titan X (Pascal) GPU. For a fair comparison with [IMD16], we use the same tracker

and its implementation as in [IMD16]. Specifically, we use the tracker of [DHK14] from the Dlib

library [Kin09]. The cropped image sequences of persons and pairs of persons are used as the

inputs to node LSTMs and edge LSTMs, respectively.

We compare our approach with the state-of-the-art methods [HYV15, IMD16]. In addition, we

evaluate the following reasonable baselines.

Baselines:

• 2-layer LSTMs (B1). We test a network of 2-layer LSTMs similar to [IMD16]. All other

baselines below and our full models use B1 to compute their potentials and p-values. B1 does

not have the energy layer, but only a feed-forward network. The event class is predicted by

the softmax output of the event LSTM.

• CERN-1 w/o p-values (B2). This baseline represents the CERN-1 network with the EL,

however, the p-values are not computed and not used for regularizing energy minimization.

Hence, the event class prediction of B2 comes from the standard energy minimization.

• CERN-2 w/o p-values (B3). Similar to B2, in this B3, we do not estimate and do not use the

p-values in the EL of CERN-2.

Datasets. We evaluate our method in two domains: collective activities and sport events using

the Collective Activity dataset [CSS09] and the Volleyball dataset [IMD16] respectively.

3.8.1 Collective Activity Dataset

The Collective Activity dataset consists of 44 videos, annotated with 5 activity categories (crossing,

walking, waiting, talking, and queueing), 6 individual action labels (NA, crossing, walking, waiting,
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Table 3.1: Comparison of different methods for group activity recognition on the Collective Activ-

ity dataset.

Method MCA MPCA

Cardinality kernel [HYV15] 83.4 81.9

2-layer LSTMs [IMD16] 81.5 80.9

B1: 2-layer LSTMs 79.7 80.3

B2: CERN-1 w/o p-values 83.8 84.3

B3: CERN-2 w/o p-values 83.8 83.7

CERN-1 84.8 85.5

CERN-2 87.2 88.3

talking, and queueing), and 8 pairwise interaction labels (NA, approaching, leaving, passing-by,

facing-each-other, walking-side-by-side, standing-in-a-row, standing-side-by-side). The interac-

tion labels are provided by the extended annotation in [CCP14].

For this dataset, we first train the node LSTMs and edge LSTMs with 10 time steps and 3000

nodes. Then, we concatenate the outputs of these two types of LSTMs at the bottom layer of

CERN, along with their VGG-16 features, and pass the concatenation to the bidirectional event

LSTM with 500 nodes and 10 time steps at the top layer of CERN. The concatenation is passed

through a max pooling layer and a fully-connected layer with a output dimension of 4500.

For comparison with [HYV15, IMD16] and baselines B1-B3, we use the following perfor-

mance metrics: (i) multi-class classification accuracy (MCA), and (ii) mean per-class accuracy

(MPCA). Our split of training and testing sets is the same as in [HYV15, IMD16]. Table 3.1 sum-

marizes the performance of all methods on recognizing group activities. Note that in Table 3.1

only [HYV15] does not use deep neural nets. As can be seen, our energy layer significantly boosts

the accuracy, outperforming the state-of-the-art by a large margin. Even when we only have the

bottom layer of LSTMs, CERN-1 still outperforms the 2-layer LSTMs in [IMD16] thanks to the

EL. Without the EL, the baseline B1 yields lower accuracy than [IMD16] even with additional

LSTMs for the interactions.
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Figure 3.6: Performance decrease of group activity recognition for a varying percentage of cor-

ruption of human trajectories in the Collective Activity dataset. We compare 2-layer LSTMs (B1),

CERN-2 w/o p-values (B3) and CERN-2 using the same corrupted trajectories as input.

Our accuracies of recognizing individual actions and interactions on the Collective Activity

dataset are 72.7% and 59.9%, using the node LSTMs and edge LSTMs respectively. Note that B1,

CERN-1 and CERN-2 share the same node and edge LSTMs.

For evaluating numerical stability of predicting group activity classes by CERN-2, we corrupt

all human trajectories in the testing data, and control the amount of corruption with the corruption

probability. For instance, for the corruption probability of 0.5, we corrupt one bounding box of a

person in every video frame with a 0.5 chance. When the bounding box is selected, we randomly

shift it with a horizontal and a vertical displacement ranging from 20% to 80% of the original

bounding box’s width and height respectively. As Figure 3.6 shows, CERN-2 consistently ex-

periences a lower degradation in performance compared to the baselines without p-values. This

indicates that incorporating the p-values into the energy model indeed benefits the inference sta-

bility. Such benefit becomes more significant as the amount of corruption in input data increases.

Figure 3.7 shows an example of the crossing activity. As can be seen, although B1 and CERN-

2 share the same individual action labels, where a majority of the people are assigned incorrect

action labels, CERN-2 can still correctly recognize the activity.
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Figure 3.7: The qualitative results on the Collective Activity dataset. From left to right, we show

the inference results from B1, CERN-2 and the ground truth (GT) labels respectively. The colors

of the bounding boxes indicate the individual action labels (green: crossing, red: waiting, magenta:

walking). The interaction labels are not shown here for simplicity.

3.8.2 Volleyball Dataset

The Volleyball dataset consists of 55 videos with 4830 annotated frames. The actions labels are

waiting, setting, digging, failing, spiking, blocking, jumping, moving, and standing; and the group

activity classes include right set, right spike, right pass, right winpoint, left winpoint, left pass, left

spike, and left set. Interactions are not annotated in this dataset, so we do not recognize interactions

and remove the edge LSTMs.

The node LSTMs have 3000 nodes and 10 time steps (including 5 preceding and 4 succeeding

frames). The event LSTM in CERN-2 is a bidirectional LSTM with 1000 nodes and 10 time steps.

In [IMD16], the max pooling has two types: 1) pooling over the output of all node LSTMs, or

2) dividing the players into two groups (the left team and the right team) first and pooling over

each group separately. We test both types of max pooling for our approach to rule out the effect of

pooling type in the comparison. CERN-1 does not have the pooling layer, thus is categorized as 1

group style.

Recognition accuracy of individual actions is 69.1% using node LSTMs, and the accuracies

of recognizing group activities are summarized in Table 3.2. Cleary, the regularized energy mini-

mization increases the accuracy compared to the conventional energy minimization (B2 and B3),

and CERN-2 outperforms the state-of-the-art when using either of the pooling types. CERN-1

does not achieve accuracy that is comparable to that of CERN-2 on the Volleyball dataset. This
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Table 3.2: Comparison of different methods for group activity recognition on the Volleyball

dataset. The first block is for the methods with 1 group and the second one is for those with 2

groups.

Method MCA MPCA

2-layer LSTMs [IMD16] (1 group) 70.3 65.9

B1: 2-layer LSTMs (1 group) 71.3 69.5

B2: CERN-1 w/o p-values (1 group) 33.3 34.3

B3: CERN-2 w/o p-values (1 group) 71.7 69.8

CERN-1 (1 group) 34.4 34.9

CERN-2 (1 group) 73.5 72.2

2-layer LSTMs [IMD16] (2 groups) 81.9 82.9

B1: 2-layer LSTMs (2 group) 80.3 80.5

B3: CERN-2 w/o p-values (2 groups) 82.2 82.3

CERN-2 (2 groups) 83.3 83.6
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Figure 3.8: The decrease of group activity recognition accuracy over different input distortion

percentages on the Volleyball dataset (all use the 2 groups style). CERN-2 is compared with 2-

layer LSTMs (B1) and CERN-2 w/o p-values (B3).

is mainly because CERN-1 reasons the group activity based on individual actions, which may not

provide sufficient information for recognizing complex group activities in sports videos. CERN-2

overcomes this problem by adding the event LSTM.

We also evaluate the stability of recognizing group activities by CERN-2 under corruption

of input human trajectories. As Figure 3.8 indicates, the p-values in the EL indeed increase the

inference reliability on the Volleyball dataset.

The qualitative results (2 groups) of a right pass activity is depicted in Figure 3.9, which

demonstrates the advantage of the inference based on our regularized energy compared to the

softmax output of the deep recurrent networks when the action predictions are not accurate.

3.9 Conclusion

We have addressed the problem of recognizing group activities, human interactions, and individ-

ual actions with a novel deep architecture, called Confidence-Energy Recurrent Network (CERN).

CERN extends an existing two-level hierarchy of LSTMs by additionally incorporating a confi-

dence measure and an energy-based model toward improving reliability and numerical stability

of inference. Inference is formulated as a joint minimization of the energy and maximization of

the confidence measure of predictions made by the LSTMs. This is realized through a new dif-
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Figure 3.9: The qualitative results on the Volleyball dataset: results of B1 (top), results of CERN-2

(middle) and the ground truth (GT) labels (bottom). The colors of the bounding boxes indicate the

individual action labels (green: waiting, yellow: digging, red: falling, magenta: standing), and the

numbers are the frame IDs.

ferentiable energy layer (EL) that computes the energy regularized by a p-value of the Fisher’s

combined statistical test. We have defined an energy-based loss in terms of the regularized energy

for learning the EL end-to-end. CERN has been evaluated on the Collective Activity dataset and

Volleyball dataset. In comparison with previous approaches that predict group activities in a feed-

forward manner using deep recurrent networks, CERN gives a superior performance, and also

gives more numerically stable solutions under uncertainty. For collective activities, our simpler

variant CERN-1 gives more accurate predictions than a strong baseline representing a two-level

hierarchy of LSTMs with softmax outputs taken as predictions. Our variant CERN-2 increases

complexity but yields better accuracy on challenging group activities which are not merely a sum

of individual actions but a complex whole.
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CHAPTER 4

Learning Social Affordances

4.1 Introduction

The concept of “affordance learning” is receiving an increasing amount of attention from robotics,

computer vision, and human-robot interaction (HRI) researchers. The term affordance was orig-

inally defined as “action possibilities” of things (e.g., objects, environments, and other agents)

by [Gib79], and it has attracted researchers to study computational modeling of such concept

[MLB08, GSE11, KRK11, MMO12, JKS13, ZFF14, KS14, PEK14, PEK15, SDC15, ZZZ15].

The idea behind modern affordance learning research is to enable robot learning of “what activi-

ties are possible” (i.e., semantic-level affordances) and “where/how it can execute such activities”

(i.e., spatial-level and motion-level affordances) from human examples. Such ability not only en-

ables robot planning of possible actions, but also allows robots to replicate complicated human

activities. Based on training videos of humans performing activities, the robot will infer when

particular sub-events can be executed and how it should move its own body-parts in order to do so.

So far, most previous works on robot affordance learning have only focused on the scenario of

a single robot (or a single human) manipulating an object (e.g., [KS14]). These systems assumed

that affordance solely depends on the spatial location of the object, its trajectory, and the intended

action of the robot. Consequently affordance was defined as a unary function in the sense that there

is only one agent (i.e., the robot) involved.

However, in order for a robot to perform collaborative tasks and interact with humans, com-

puting single-robot object manipulation affordances based on object recognition is insufficient. In

these human-robot interaction scenarios, there are multiple agents (humans and robots) in the scene

and they interact and react. Thus, the robot must (1) represent its affordance as “interactions” be-
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Shake Hands
Current frame Affordance

Figure 4.1: Visualization of our social affordance. The green (right) person is considered as our

agent (e.g., a robot), and we illustrate (1) what sub-event the agent needs to do given the current

status and (2) how it should move in reaction to the red (left) person’s body-parts to execute such

sub-event. The black skeleton indicates the current frame estimation, and greens are for future

estimates. The right figure shows a hierarchical activity affordance representation, where affor-

dance of each sub-event is described as the motion of body joints. We also visualize the learned

affordable joints with circles, and their grouping is denoted by the colors. Note that the grouping

varies in different sub-events.

tween body joints of multiple agents, and (2) learn to compute such hierarchical affordances based

on its status. Its affordance should become activated only when the action makes sense in the social

context. For instance, the fact that human’s hand is a location of affordance doesn’t mean that the

robot can grab it whenever it feels like. The robot should consider grabbing the human hand only

when the person is interested in performing hand-shake activity with it.

Therefore, in this chapter, we introduce the new concept of social affordances, and present an

approach to learn them from human videos. We formulate the problem as the learning of structural

representations of social activities describing how the agents and their body-parts move. Such

representation must contain a sufficient amount of information to execute the activity (e.g., how

should it be decomposed? what body-parts are important? how should the body-parts move?), al-

lowing its social affordance at each time frame to be computed by inferring the status of the activity

and by computing the most appropriate motion to make the overall activity successful (Figure 4.1).
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Since we consider the problem particularly in the context of human-robot interaction, activity rep-

resentation involving multiple agents with multiple affordable body-parts must be learned, and the

inference on a robot’s affordance should be made by treating it as one of the agents.

Our problem is challenging for the following reasons: (i) human skeletons estimated from

RGB-D videos are noisy due to occlusion, making the learning difficult; (ii) human interactions

have much more complex temporal dynamics than simple actions; and (iii) our affordance learning

is based on a small training set with only weak supervision.

For the learning, we propose a Markov Chain Monte Carlo (MCMC) based algorithm to iter-

atively discover latent sub-events, important joints, and their functional grouping from noisy and

limited training data. In particular, we design two loops in the learning algorithm, where the outer

loop uses a Metropolis-Hasting algorithm to propose temporal parsing of sub-events for each inter-

action instance (i.e., sub-event learning), and the inner loop selects and groups joints within each

type of sub-event through a modified Chinese Restaurant Process (CRP). Based on the discovered

latent sub-events and affordable joints, we learn both spatial and motion potentials for grouped af-

fordable joints in each sub-event. For the motion synthesis, we apply the learned social affordance

to unseen scenarios, where one agent is assumed to be an observed human, and the other agent

is assumed to be the robot that we control to interact with the observed agent (an object will be

treated as part of the observation if it is also involved). To evaluate our approach, we collected

a new RGB-D video dataset including 3 human-human interactions and 2 human-object-human

interactions. Note that there are no human-object-human interactions in the existing RGB-D video

datasets.

To our knowledge, this is the first work to study robot learning of affordances for social ac-

tivities. Our work differs from the previous robot affordance learning works in the aspect that it

(1) considers activities of multiple agents, (2) decomposes activities into multiple sub-events/sub-

goals and learns their affordances (i.e., hierarchical affordance) that are grounded to the skeleton

sequences, and (3) learns both spatial and motion affordances of multiple body-parts involved in

interactions.
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4.2 Related work

Although there are previous studies on vision-based hierarchical activity recognition [GSS09,

RA11, LWY12, AXZ12, PSY13, CCP14, SXR15] and human-human interaction recognition [RA11,

LCS14, HK14], research on affordances of high-level activities has been very limited. For the

robotic motion planning and object manipulation, [LSK13, YLC15, WZS15] presented symbolic

representation learning methods for single agent activities, but low-level joint trajectories were not

explicitly modeled in those works. In computer graphics, some motion synthesis approaches have

been proposed [LWS02, THR06, WFH08, FLP15], but they only learn single agent motion based

on highly accurate skeleton inputs from motion capture systems.

In contrast, in this chapter, we are studying affordances of dynamic agents with multiple body

parts, including human-human interactions (e.g., shaking hands) as well as human-object-human

interactions (e.g., object throw-catch). Its importance was also pointed out in [Gib79] as “the

richest and most elaborate affordances”, and we are exploring such concept for the first time for

robots. We specifically denote such affordances as social affordances, and present an approach to

learn them from human activity videos.

4.3 Representation and Formulation

We propose a graphical model to represent the social affordance in a hierarchical structure, which

is grounded to skeleton sequences (Figure 4.2a). Our representation not only describes what hu-

man skeletons (i.e., body-joint locations) are likely to be observed when two persons are per-

forming interactions, but also indicates how each interaction need to be decomposed in terms of

sub-events/sub-goals and how agents should perform such sub-events in terms of joint motion.

Skeleton sequences. An interaction instance is represented by the skeleton sequences of the

two agents. We use J t = {J t1i} ∪ {J t2i} to denote the positions of the two agents’ joints at time

t = 1, · · · , T . If an interaction involves an object, then J t = {J t1i} ∪ {J t2i} ∪ Ot, where Ot is

the position of the object at t. In practice, we select 5 most important joints – base joint, left/right

writs, and left/right ankles for the social affordance, whose indexes are denoted as a set I. This
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Figure 4.2: Our model. (a) Factor graph of an interaction. (b) Selection and grouping of joints for

a sub-event.

reasonable simplification helps us eliminate the noise introduced by skeleton extraction from RGB-

D videos while maintaining the overall characteristics of each interaction.

Interaction label. A label c ∈ C is given to an interaction to define its category, where C is a

predefined dictionary.

Latent sub-events. One of our key intuitions is that a complex interaction usually consists

of several steps. In order to enable the robots to mimic the human behavior, it is necessary to

discover these underlying steps as latent sub-events. Here, a sub-event is defined as a sub-interval

within a complete interaction. There are two crucial components in a sub-event: 1) the sub-goal to

achieve at the end of the sub-event, and 2) the motion patterns to follow in this sub-event. Since it

is difficult for humans to manually define and annotate the sub-events, we only specify the number

of latent sub-events, i.e., |S|, and our learning method automatically searches the optimal latent

sub-event parsing for each training instance. Here, a latent sub-event parsing of an interaction

instance whose length is T is represented by non-overlapping intervals {Tk}k=1,··· ,K such that∑
k |Tk| = T , where Tk = {t : t = τ 1

k , · · · , τ 2
k}, and the sub-event labels of the corresponding

intervals, i.e., {sk}k=1,··· ,K . Note thatK, the number of sub-events, may vary in different instances.

Joint selection and grouping. Another key intuition of ours is to discover the affordable

joints and their functional groups in each latent sub-event. This means that 1) some joints do
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not contribute much to accomplishing the latent sub-event due to the lack of clear motion and/or

specific spatial relations among them, 2) and the rest joints are regarded as affordable joints and

are further clustered together to form several functional groups, each of which has rigid spatial

relations among the grouped joints in the sub-events. Figure 4.2b illustrates the selection and

grouping of joints in a sub-event: we first select affordable joints with a Bernoulli distribution

prior and remain the rest joints in aNull group; then we assign each affordable joint to a functional

group from a infinity number of latent functional classes H = {h1, · · · , h∞}. The grouping can

be addressed by a Chinese Restaurant Process (CRP), where a functional class is a table, and each

affordable joint can be perceived as a customer to be seated at a table. We introduce auxiliary

variables Zs = {zsai : zsai ∈ H, a ∈ {1, 2}, i = 1, · · · , NJ} to indicate the joint selection and

grouping in a sub-event s ∈ S of interaction c ∈ C. Jai is assigned to hzsai if zsai > 0; otherwise, Jai

is assigned to the Null group. Together Zc = {Zs}s∈S represents the joint selection and grouping

in a type of interaction, c.

Sub-goals and motion patterns. After grouping joints, the sub-goal of a sub-event is defined

by the spatial relations (i.e., spatial potentials Ψg) among joints within the functional groups, and

movements of affordable joints are described with the motion pattens (i.e., motion potentials Ψm).

These allow us to infer “how” each agent should move.

Parse graph. As shown in Figure 4.2a, an interaction instance is represented by a parse graph

G = 〈c, S, {J t}t=1,··· ,T 〉. With the corresponding joint selection and grouping Zc, we formalize the

social affordance of an interaction as 〈G,Zc〉. Note that Zc is fixed as common knowledge while

G depends on the observed instance.

4.3.1 Probabilistic Modeling

In this subsection, we provide how our approach models the joint probability of each parse graph

G and the joint selection and grouping Z, allowing us to use it for both (i) learning the structure

and parameters of our representation based on observed human skeletons (Section 4.4) and (ii)

inferring/synthesizing new skeleton sequences for the robot using the learned model (Section 4.5).

For each interaction c, our social affordance representation has two major parts: 1) optimal
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body-joint selection and grouping Zc, and 2) parse graph G for each observed interaction instance

of c. Given Zc, the probability of G for an instance is defined as

p(G|Zc) ∝
∏
k

p({J t}t∈Tk |Zsk , sk, c)︸ ︷︷ ︸
likelihood

· p(c)︸︷︷︸
interaction prior

·
K∏
k=2

p(sk|sk−1, c)︸ ︷︷ ︸
sub-event transition

·
K∏
k=1

p(sk|c)︸ ︷︷ ︸
sub-event prior

,
(4.1)

and the prior for joint selection and grouping is

p(Zc) =
∏
s∈S

p(Zs|c). (4.2)

Hence the joint probability is

p(G,Zc) = p(G|Zc)p(Zc). (4.3)

Likelihood. The likelihood term in Eq. (4.1) consists of i) spatial potential Ψg({J t}t∈T , Zs, s)

for the sub-goal in sub-event s, and ii) motion potential Ψm({J t}t∈T , Zs, s) for motion patterns of

the affordable joints in s:

p({J t}t∈T |Zs, s, c) = Ψg({J t}t∈T , Zs, s)Ψm({J t}t∈T , Zs, s). (4.4)

Spatial potential. We shift the affordable joints at the end of each sub-event (i.e., τ 2) in an

interaction w.r.t. the mass center of the assigned functional group. The shifted joint locations at t

are denoted as J̃ tai. If there is only one joint in a group, the reference point will be the base joint

location of the other agent at the moment instead. Then for each joint, we have

ψg(J̃
t
ai) = ψxy(J̃

t
ai)ψz(J̃

t
ai)ψo(J̃

t
ai), (4.5)

where ψxy(J̃
t
ai) and ψz(J̃

t
ai) are Weibull distributions of the horizontal and vertical distance between

the joint and the reference point, and ψo(J̃
t
ai) is a von Mises distribution for the angle between the

two points. Note that the spatial potential only accounts for affordable joints (i.e., zsai > 0). Thus

Ψg({J t}t∈T , Zs, s) =
∏
a,i

ψg(J̃
τ2

ai )1(zsai>0). (4.6)
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Motion potential. In a sub-event s of an interaction, we compute the movement of a joint Jai

by dai = Jτ
2

ai − Jτ
1

ai . Similar to the spatial potential, this joint’s motion potential is

ψm({J tai}t∈T ) = ψm(dai) = ψxy(dai)ψz(dai)ψo(dai). (4.7)

For an affordable joint, we use Weibull distributions for both horizontal and vertical distances and

a von Mises distribution for the orientation. To encourage static joints to be assigned to the Null

group, we fit exponential distributions for the distances while keeping ψo(dai) the same if zsai = 0.

Hence,

Ψm({J t}t∈T , Zs, s) =
∏
a,i

ψm({J tai}t∈Tk). (4.8)

Prior for interaction category and sub-event transition. We assume uniform distribution for

p(c) and compute the transition frequency from training data for p(sk|sk−1, c).

Sub-event prior. The duration of a sub-event sk in interaction c is regularized by a log-normal

distribution p(sk|c):

p(sk|c) = exp{−(ln |Tk| − µ)2/(2σ2)}/(|Tk|σ
√

2π). (4.9)

Joint selection and grouping prior. Combined with Bernoulli distribution and the prior of

CRP, the joint selection and grouping prior for Zs in sub-event type s of interaction c is defined as

p(Zs|c) =

∏
h(Mh − 1)!

M !︸ ︷︷ ︸
CRP prior

∏
ai

β1(zsai>0)(1− β)(1−1(zsai>0))︸ ︷︷ ︸
Bernoulli prior for a joint

. (4.10)

where Mh is the number of joints assigned to latent function group h, and M is the total number

of affordable joints, i.e., M =
∑

a,i 1(zsai > 0).

4.4 Learning

Given the skeleton sequences and their interaction labels, we learn the model for each interaction

category in isolation. Assume that we have N training instances for interaction c, then will have N

parse graphs G = {Gn}n=1,...,N , and a common Zc for this type of interaction. The objective of our
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Algorithm 1 Learning Algorithm

1: Input: {J t}t=1,··· ,T of each instance with the same interaction category c ∈ C
2: Obtain the atomic time intervals by K-means clustering

3: Initialize S of each instance, and Zc

4: repeat

5: Propose S′

6: repeat

7: Sample new Zc through Gibbs sampling

8: until Convergence

9: α = min{Q(S′→S)P ∗(G′,Z′c)
Q(S→S′)P ∗(G,Zc) , 1}

10: u ∼ Unif [0, 1]

11: If u ≤ α, accept the proposal S′

12: until Convergence

learning algorithm is to find the optimal G and Zc that maximize the following joint probability:

p(G, Zc) = p(Zc)
N∏
n

p(Gn|Zc). (4.11)

Note that the size of latent sub-event dictionary, |S|, is specified for each interaction.

We propose a MCMC learning algorithm as Alg. 1, which includes two optimization loops:

1 Metropolis-Hasting algorithm for sub-event parsing.

2 Given sub-event parsing, apply Gibbs sampling for the optimizationZ∗c = argmaxZc p(G, Zc) =

argmaxZc p(G|Zc)p(Zc).

The details of two loops are introduced as follows.

4.4.1 Outer Loop for Sub-Event Parsing

In the outer loop, we optimize the sub-event parsing by a Metropolis-Hasting algorithm. We first

parse each interaction sequence into atomic time intervals using K-means clustering of agents’

skeletons (we use 50 clusters). Then the sub-events are formed by merging some of the atomic
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time intervals together. At each iteration, we propose a new sub-event parsing S ′ through one of

the following dynamics:

Merging. In this dynamics, we merge two sub-events with similar skeletons together and

uniformly sample a new sub-event label for it, which forms a new sub-event parsing S ′. For

this, we first define the distance between two consecutive sub-events by the mean joint distance

between the average skeletons in these two sub-events, which is denoted by d. Then the proposal

distribution is Q(S → S ′|d) ∝ e−λd/NL, where λ is a constant number, and NL is number of

possible label assignments for the new sub-event. In practice, we set λ = 1.

Splitting. We can also split a sub-event with multiple atomic time intervals into two non-

overlapping sub-events with two new labels. Note that an atomic time interval is not splittable.

Similarly, we can compute the distance d between the average skeletons of these two new sub-

events and assume uniform distributions for the new labels. To encourage the split of two sub-

events with very different skeletons, we define the proposal distribution to be Q(S → S ′|d) ∝
(1− e−λd)/NL, where NL is number of possible new labels.

Re-labeling. We relabel a uniformly sampled sub-event for this dynamics, which gives the

proposal distribution Q(S → S ′|d) = 1/(NL ·NS), where NL and NS are the numbers of possible

labels and current sub-events respectively.

In addition, the type of dynamics at each iteration is sampled w.r.t. these three probabilities,

q1 = 0.4, q2 = 0.4, q3 = 0.2, for the above three types respectively.

The acceptance rate α is then defined as α = min{Q(S′→S)P ∗(G′,Z′c)
Q(S→S′)P ∗(G,Zc) , 1}, where P ∗(G, Zc) is

the highest joint probability given current sub-event parsing S, i.e., P ∗(G, Zc) = maxZc p(G, Zc) .

Similarly, P ∗(G ′, Z ′c) = maxZ′c p(G ′, Z ′c).

4.4.2 Inner Loop for Joint Selection and Grouping

To obtain P ∗(G ′, Z ′c) in the acceptance rate defined for the outer loop given the proposed S ′, we

use Gibbs sampling to iteratively update Z ′c. At each iteration, we assign a joint from I to a new
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group in each type of sub-event by

zsai ∼ p(G|Z ′c)p(zsai|Zs
−ai). (4.12)

Based on Eq. (4.10), we have

p(zsai|Zs
−ai) =



β
γ

M − 1 + γ
if zsai > 0,Mzsai

= 0

β
Mzsai

M − 1 + γ
if zsai > 0,Mzsai

> 0

1− β if zsai = 0

(4.13)

where the variables have the same meaning as in Eq. (4.10) and β = 0.3 and γ = 1.0 are the

parameters for our CRP.

4.5 Motion Synthesis

Our purpose for learning social affordance is to teach a robot how to interact with a human. Hence,

we design an online simulation method to “synthesize” a skeleton sequence (i.e., {J2i}tt=1,··· ,T ) as

a robot’s action sequence to interact with a human (i.e., the first agent) and an object given the

observed skeleton sequence (i.e., {J1i}tt=1,··· ,T ), where T is the length of the interaction. The

idea is to make our approach automatically “generate” an agent’s body joint motion based on the

learned social affordance and the other agents’ motion. Note that the human skeleton sequence

has not been seen in the training data and we assume that the interaction category c is given. The

estimated object trajectory {Ot}t=1,··· ,T will also be used if an object is involved. Since we define

the social affordance for a interaction instance as 〈G,Zc〉, the synthesis is essentially to infer the

joint locations for the second agent (i.e., {J2i}t) by maximizing the joint probability defined in

Eq. (4.3).

The main steps of our motion synthesis are summarized in Alg. 2. At any time t, we first

use a dynamic programming (DP) algorithm to estimate current sub-event type based on our ob-

servations of the human agent (and the object if it exists) as well as the skeletons that we have

synthesized so far. Then we sample the new joint locations by maximizing the spatial and motion

potentials under current sub-event.
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Algorithm 2 Motion Synthesis Algorithm
1: Give the interaction label c and the total length T ; set unit time interval for simulation to be ∆T = 5;

input the skeletons in the first T0 = 10 frames, i.e., {J t}t=1,··· ,T0 ; set τ ← T0

2: repeat

3: Input {J1i}tt=τ+1,··· ,τ+∆T

4: Extend {J2i}t to τ + ∆T by copying {J2i}τ temporarily

5: Infer S of {J t}t=1,··· ,τ+∆T by DP; we assume that the last sub-event, sK , is the current on-going

sub-event type

6: Predict the ending time τ2
K of sK by sampling the complete duration |T | w.r.t. the prior defined

in Eq. (4.9), and generate N = 100 possible samples for the locations of the modeled five joints in I,

i.e., {Ĵn2i′}i′∈I,n=1,··· ,N ; note that the joints in the Null group are assumed to be static in the current

sub-event

7: Obtain the N corresponding joint locations at current time τ + ∆T , {Jn2i′}i′∈I,n=1,··· ,N , by inter-

polation based on {Ĵn2i′}
8: We choose the one that maximizes the likelihood, i.e., {J∗2i′}i′∈I , by computing motion and spatial

potentials

9: Fit clustered full body skeletons from K-means to {J∗2i′}i′∈I by rotating limbs, and obtain the

closest one {J∗2i}
10: Jτ+∆T

2i ← J∗1i

11: Interpolate the skeletons from τ + 1 to τ + ∆T , and update {J2i}tt=τ+1,··· ,τ+∆T

12: τ ← τ + ∆T

13: until τ ≥ T

4.5.1 Dynamic Programming

We use the following DP algorithm to efficiently infer the latent sub-events given the skeletons

of two agents (and the object trajectory if present) by maximizing the probability of the parse

graph defined in Eq. (4.1). For a sequence of interaction c, we first define m(s′, t′, s, t) as the log

probability of assigning sub-event type s to the time interval [t′, t] when the preceding sub-event
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type is s′, which can be computed as

m(s′, t′, s, t) = log p({J t}t∈[t′,t]|Zs, s, c)

+ log p(t− t′ + 1|s, c) + log p(s|s′, c)
(4.14)

Then we define the highest log posterior probability for assigning type s to the last sub-event of

{J t}t=1,··· ,t as b(s, t):

b(s, τ) = max
s′ 6=s,t′<t

{b(s′, t′) +m(s′, t′, s, t)} (4.15)

where b(s, 0) = 0. By recording all pairs of s′ and t′ that maximize b(s, t) in Eq. (4.15), we can eas-

ily backtrace the optimal latent sub-event parsing including labels s1, · · · , sK and corresponding

intervals T1, · · · , TK , starting from the last frame until the first frame in a reverse process.

4.6 Experiment

We collected a new RGB-D video dataset, i.e., UCLA Human-Human-Object Interaction (HHOI)

dataset, which includes 3 types of human-human interactions, i.e., shake hands, high-five, pull

up, and 2 types of human-object-human interactions, i.e., throw and catch, and hand over a cup.

On average, there are 23.6 instances per interaction performed by totally 8 actors recorded from

various views. Each interaction lasts 2-7 seconds presented at 10-15 fps. We used the MS Kinect

v2 sensor for the collection, and also took advantage of its skeleton estimation. The objects are

detected by background subtraction on both RGB and depth images. The dataset is available at:

http://tsho.io/SocialAffordance.

We split the instances by four folds for the training and testing where the actor combinations

in the testing set are different from the ones in the training set. For each interaction, our training

algorithm converges within 100 outer loop iterations, which takes 3-5 hours to run on a PC with

an 8-core 3.6 GHz CPU. Our motion synthesis can be ran at the average speed of 5 fps with our

unoptimized Matlab code.

Experiment 1: Our approach learns affordance representations from the training set, and uses

the testing set to “synthesize” the agent (i.e., robot) skeletons in reaction to the interacting human

skeletons (and an object). We first measured the average joint distance between synthesized skele-

tons and the ground truth (GT) skeletons since good synthesis should not be very different from
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Table 4.1: Average joint distance (in meters) between synthesized skeletons and GT skeletons for

each interaction.

Method Shake Hands Pull Up High-Five Throw & Catch Hand Over Average

HMM 0.362 0.344 0.284 0.189 0.229 0.2816

V1 0.061 0.144 0.079 0.091 0.074 0.0899

V2 0.066 0.231 0.090 0.109 0.070 0.1132

Ours 0.054 0.109 0.058 0.076 0.068 0.0730

GT. A multi-level hidden Markov model (HMM) is implemented as the baseline method, where

the four levels from top to bottom are: 1) the quantized distance between agents, 2) the quantized

relative orientation between agents, 3) the clustered status of the human skeleton and the object,

and 4) the clustered status of the synthesized skeleton. In addition, we also compare our full model

with a few variants: ours without joint selection and grouping (V1), and ours without the latent

sub-events (V2). Notice that this social affordance based skeleton synthesis is a new problem and

we are unaware of any exact prior state-of-the-art approach.

The average joint distance for different methods are compared in Table. 4.1. Our full model

outperforms all other approaches by a large margin, which proves the advantage of our hierarchical

generative model with latent sub-events and joint grouping. Note that the tracking error of Kinect 2

for a joint ranges from 50 mm and 100 mm [WKO15]. Figure 4.3 demonstrates a few joint selection

and grouping results for some automatically discovered latent sub-events in different interactions.

We also visualize several synthesized interactions in Figure 4.4, where the synthesized skeletons

from ours and the HMM baseline are compared with GT skeletons.

Experiment 2: In addition, we also conducted a user study experiment of comparing the

naturalness of our synthesized skeleton vs. ground truths. Similar to [MSI09], we asked 14 human

subjects (undergraduate/graduate students at UCLA) to rate the synthesized and GT interactions.

For this, we predefined 4 sets of videos, where there were 5 videos for each interaction in a set, and

all these 5 videos were either from GT or ours. Thus each set had a mixture of videos of GT and

ours, but GT and ours did not co-exist for any interaction. Then we randomly assigned these 4 sets
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Figure 4.3: Visualization of some discovered sub-events and their joint grouping in the five inter-

actions, where the number denotes the sub-event label and the joint colors show the groups. For

throw and catch and hand over a cup, an object is also displayed as an additional affordable joint.

The shown frames are the last moments of the corresponding sub-events, which depict the learned

sub-goals.

Hand Over a CupThrow and CatchHigh-Five
#50 #80 #110 #30 #80 #130 #15 #45 #75 #15 #40 #65 #20 #70 #120
Shake Hands Pull Up

G
T

O
ur

s
HM

M

Figure 4.4: Comparison between synthesized and GT skeletons. The red agent and the blue object

are observed; the green agents are either GT skeletons, synthesized skeletons by ours, or those by

HMM respectively. The numbers are the frame indexes.

to the subjects who were asked to watch each video in the given set only once and rate it from 1

(worst) to 5 for three different questions: “Is the purpose of the interaction successfully achieved?”

(Q1), “Is the synthesized agent behaving naturally?” (Q2), and “Does the synthesized agent look

like a human rather than a robot?” (Q3). The subjects were instructed that the red skeleton was a

real human and the green skeleton was synthesized in all videos. They were not aware of the fact

that GT and our synthesized sequences were mixed in the stimuli.

Table 4.2 compares the mean and standard deviation of human ratings per interaction per ques-
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Table 4.2: The means and standard deviations of human ratings for the three questions. The

highlighted ratings indicate that the sequences synthesized by ours have higher mean ratings than

GT sequences.

Source Shake Hands Pull Up High-Five Throw & Catch Hand Over

Q1
Ours 4.60± 0.69 3.90± 0.70 4.53± 0.30 4.31± 0.89 4.40± 0.37

GT 4.50± 0.82 4.29± 0.58 4.64± 0.33 4.20± 0.76 4.64± 0.30

Q2
Ours 4.23± 0.34 2.80± 0.75 3.70± 0.47 4.06± 0.83 3.89± 0.38

GT 4.20± 0.47 4.23± 0.48 4.64± 0.17 3.86± 0.53 4.24± 0.46

Q3
Ours 4.23± 0.50 2.63± 0.60 3.57± 0.73 4.03± 0.88 3.69± 0.64

GT 4.30± 0.60 3.71± 1.15 4.40± 0.63 3.97± 0.74 4.40± 0.24

tion. Following [WN11], we test the equivalence between the ratings of ours and GT for each

question using 90% confidence interval. When the equivalence margin is 0.5, shake hands and

throw and catch pass the test for all three questions while the rest interactions only pass the test

for Q1. When we consider the equivalence margin to be 1, only pull up does not pass the equiv-

alence test for Q2 and Q3. Overall, our motion synthesis is comparable to Kinect-based skeleton

estimation, especially for Q1, suggesting that we are able to learn an appropriate social affordance

representation. The lower ratings for pull up mainly results from much noisier training sequences.

Interestingly, the synthesized sequences of shake hands and throw and catch have sightly higher

ratings than GT for Q1 and Q2. This is because our model learns affordances from multiple training

sequences, whereas GT is based on a single and noisy Kinect measure. One distinguishable effect

is hand touching, which is a critical pattern for the human subjects to rate the videos according to

their feedback after the experiment. In GT videos, especially shake hands and throw and catch,

the hand touching (either with another agent’s hand or the ball) is not captured due to occlusion,

whereas our synthesized skeletons have notably better performances since our method automati-

cally groups the corresponding wrist joints (and the ball) together to learn their spatial relations,

as shown in Figure 4.4. This shows that our approach is learning sub-goals of the interactions

correctly even with noisy Kinect skeletons.
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For Q3, we also counted the frequencies of the high scores (4 or 5) given to the five interactions:

0.87, 0.17, 0.53, 0.77, 0.63 for ours, and 0.88, 0.69, 0.84, 0.66, 0.84 for GT respectively (ordered

as in Table 4.2). This is similar to the Turing test: we are measuring whether the subjects perceived

the agent as more human-like or more robot-like.

After synthesizing the skeleton sequence, applying the social affordances learned from human

activities to the robot replication is straightforward. Since we explicitly represent the spatial and

motion patterns of the base joint and the end points of the limbs, we can match them to the corre-

sponding base position and end positions of limbs on a robot. Consequently movement control of

these key positions of a robot can be achieved by moving them based on the synthesized trajecto-

ries of their human joint counterparts to reach the desired sub-goals. We will implement this on a

real robotic system in the future work.

4.7 Conclusion

In this chapter, we discussed the new concept of social affordance. We were able to confirm that

our approach learns affordance on human body-parts from human interactions, finding important

body joints involved in the interactions, discovering latent sub-events, and learning their spatial

and motion patterns. We also confirmed that we are able to synthesize future skeletons of agents

by taking advantage of the learned affordance representation, and that it obtains results comparable

to RGBD-based ground truth skeletons estimated from Kinect.

One future work is to transfer our learned human motion model to a robot motion model. In this

chapter, we focused on the affordance “learning” part, and we took advantage of it to synthesize

skeleton motion sequences by assuming that humans and robots share their body configurations

and motion (i.e., a humanoid robot). However, in practice, robots have different configurations

and mechanical constraints than humans. In order for the learned social affordance to be useful

for robots in general (e.g., non-humanoid robots), motion transfer is needed as a future research

challenge.
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CHAPTER 5

Motion Transfer for Human-Robot Interactions Using Social

Affordance Grammar

5.1 Introduction

As discussed in Chapter 4, human-robot interactions must follow certain social etiquette or social

norms, in order to make humans comfortable, just like human social interactions. When interact-

ing with humans in various social situations, a robot should reason the intentions and feelings of

humans who are near it and only perform socially appropriate actions while trying to achieve its

own goal.

We have proposed a statistical approach for learning social affordances as hierarchical repre-

sentations of human interactions in Chapter 4. In this chapter, we aim at developing a real-time

motion inference to enable natural human-robot interactions by i) first learning social affordances

(i.e., action possibilities following basic social norms) from human interaction videos, and ii) then

generating robot plans based on the learned social affordances. More specifically, we are interested

in the following three general types of human-robot interactions that we believe are most domi-

nant interactions for robots: i) social etiquette, e.g., greeting, ii) collaboration, e.g., handing over

objects, and iii) helping, e.g., pulling up a person who falls down.

To this end, we propose a new representation for social affordances, i.e., social affordance

grammar as a spatiotemporal AND-OR graph (ST-AOG), which encodes both important latent

sub-goals for a complex interaction and the fine grained motion grounding such as human body

gestures and facing directions. We learn the grammar from RGB-D videos of human interactions

as Figure 5.1 depicts. Our grammar model also enables short-term motion generation (e.g., raising
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Figure 5.1: The framework of our approach.

an arm) for each agent independently while providing long-term spatiotemporal relations between

two agents as sub-goals to achieve for both of them (e.g., holding the right hand of each other),

which simultaneously maximizes the flexibly of our motion inference (single agent action) and

grasps the most important aspects of the intended human-robot interactions (sub-goals in joint

tasks).

Contributions:

1. A general framework for weakly supervised learning of social affordance grammar as a ST-

AOG from videos;

2. A real-time motion inference based on the ST-AOG for transferring human interactions to

HRI.

5.2 Related Work

Affordances. In the existing affordance research, the domain is usually limited to object affor-

dances [MLB08, KRK11, MMO12, ZFF14, KS14, PEK14, SDC15, ZZZ15], e.g., possible ma-

nipulations of objects, and indoor scene affordances [GSE11, JKS13], e.g., walkable or standable

surface, where social interactions are not considered. [SRZ16] is the first to propose a social af-

fordance representation for HRI. However, it could only synthesize human skeletons rather than

control a real robot, and did not have the ability to generalize the interactions to unseen scenarios.
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We are also interested in learning social affordance knowledge, but emphasize on transferring such

knowledge to a humanoid in a more flexible setting.

Structural representation of human activities. In recent years, several structural represen-

tations of human activities for the recognition purposes have been proposed for human action

recognition [GSS09, BT11, PSY13, LZZ15] and for group activity recognition [RA11, LWY12,

AXZ12, CCP14, LCS14, SXR15, DVH16]. There also have been studies of robot learning of

grammar models [LSK13, YLC15, XSX16], but they were not aimed for HRI.

Social norms learning for robots. Although there are previous works on learning social norms

from human demonstrations aimed for robot planning, they mostly focused on relatively simple

social scenarios, such as navigation [LSS12, OA16]. On the contrary, we are learning social affor-

dances as a type of social norm knowledge for much more complex interactions, which involve the

whole body movements.

5.3 Framework Overview

The framework of our approach illustrated in Figure 5.1 can be outlined as follows:

Human videos. We collect RGB-D videos of human interactions, where human skeletons were

extracted by Kinect. We use the noisy skeletons of these interactions as the input for the affordance

learning.

Social affordance grammar learning. Based on the skeletons from human interaction videos,

we design a Gibbs sampling based weakly supervised learning method to construct a ST-AOG

grammar as the representation of social affordances for each interaction category.

Real-Time motion inference. For transferring human interactions to human-robot interac-

tions, we propose a real-time motion inference algorithm by sampling parse graphs as hierarchical

plans from the learned ST-AOG and generate human-like motion accordingly for a humanoid to

interact with a human agent.
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Figure 5.2: Social affordance grammar as a ST-AOG.

5.4 Representation

We represent the social affordance knowledge as stochastic context sensitive grammar using a

spatiotemporal AND-OR graph (ST-AOG), as shown in Figure 5.2. The key idea is to model the

joint planning of two agents on top of independent action modeling of individual agents. Following

the Theory of Mind (ToM) framework, a ST-AOG defines the grammar of possible robotic actions

(agent 2) at a specific moment given the observation of agent 1’s actions as the belief, the joint

sub-tasks as sub-goals, and the interaction category as the overall goal.

We first define a few dictionaries for the grammar model encoding the key elements in the social

affordances. We constrain the human-robot interactions in a set of categories C. Dictionaries of

arm motion attributes AM and relation attributes AR are specified and shared across all types of

interactions. Also, for each category c, there are dictionaries of latent joint sub-tasks J c, latent

atomic actions of agent i, Sci , where Sci are shared by different joint sub-tasks within c. Note that

joint sub-tasks and atomic actions are not predefined labels but rather latent symbolic concepts

mined from human activity videos, which boosts the flexibility of our model and requires much
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less human annotation efforts.

There are several types of nodes in our ST-AOG: An AND node defines a production rule that

forms a composition of nodes; an OR node indicates stochastic switching among lower-level nodes;

the motion leaf nodes show the observation of agents’ motion and their spatiotemporal relations;

attribute leaf nodes provide semantics for the agent motion and spatiotemporal relations, which

can greatly improve the robot’s behavior. In our model, we consider four arm motion attributes,

i.e., moving left/right arm, static left/right arm. Inspired by prior work on social perception which

has revealed that touching is one of the most critical cues that signal social interactions [STC16],

we specify the relation attributes as approaching and holding between two agents’ hands (possibly

an object).

The edges E in the graph represent decomposition relations between nodes. At the top level, a

given interaction category leads to a selection of joint sub-tasks as the sub-goal to achieve for the

given moment. A joint sub-task further leads to the atomic action selection of two agents and can

also be bundled with relation attributes. An atomic action encodes a consistent arm motion pattern,

which may imply some arm motion attributes of agent 2 for the purpose of motion inference. Some

of the nodes in the dashed box are connected representing the “followed by” relations between joint

sub-tasks or atomic actions with certain transition probabilities.

The motion grounding is designed for motion transfer from a human to a humanoid, which

entails social etiquette such as proper standing distances and body gestures. As shown in Fig-

ure 5.3, the pose of a human arm at time t can be conveniently mapped to a robot arm by four

degrees: θt = 〈s0, s1, e0, e1〉. The wrist angles are not considered due to the unreliable hand ges-

ture estimation from Kinect. Thus, in an interaction whose length is T , there is a sequence of joint

angles, i.e., Θil = {θtil}t=1,··· ,T for agent i’s limb l, where l = 1 stands for left arm and l = 2

indicates right arm. Similarly the hand trajectories Hil = {htil} are also considered in order to

have a precise control of the robot’s hands. We model the spatiotemporal relations with agent 2’s

the relative facing directions, O = {ot}t=1,··· ,T , and relative base positions (in the top-down view),

X = {xt}t=1,··· ,T , by setting the facing directions and base joint positions of agent 1 as references

respectively. We also consider the distances between two agents’ hands, Dll′ = {dtll′}t=1,··· ,T (l is

the limb of agent 1 and l′ is the limb of agent 2) for the relations. The distances between agent 2’s
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Figure 5.3: (a) The joint angles of the arm of a Baxter robot (from

http://sdk.rethinkrobotics.com/wiki/Arms), which are directly mapped to a human’s arm (b).

The additional angles (e.g., w2) can be either computed by inverse kinematics or set to a constant

value.

hands and an object can be included if an object is involved. For an interaction instance, we then

define the action grounding of agent i to be ΓAi = 〈Θ〉, and the relation grounding of both agents

to be ΓR = 〈O,X,D〉, where Θ = {Θil}l=1,2, H = {Hil}l=1,2, and D = {Dll′}l,l′∈{1,2}. Hence,

the overall motion grounding is Γ = 〈{ΓAi }i=1,2,Γ
R〉.

Finally, the ST-AOG of interactions C is denoted by G = 〈C, {J c}c∈C, {Sci }c∈C,i=1,2,AM ,AR,Γ, E〉.
At any time t, we use a sub-graph of the ST-AOG, i.e., a parse graph pgt = 〈c, jt, st1, st2〉, to rep-

resent the actions of individual agents (st1, st2) as well as their joint sub-tasks (jt) in an interaction

c. Note that the attributes are implicitly included in the parse graphs since they are bundled with

labels of jt and st2.

For an interaction in [1, T ], we may construct a sequence of parse graphs PG = {pgt}t=1,··· ,T

to explain it, which gives us three label sequences: J = {jt}t=1,··· ,T , S1 = {st1} and S2 = {st2}.
By merging the consecutive moments with the same label of joint sub-tasks or atomic actions,

we obtain three types of temporal parsing, i.e., T J = {τJk }k=1,··· ,KJ , T S1 = {τS1k}k=1,··· ,KS
1

, and

T S2 = {τS2k}k=1,··· ,KS
2

for the joint sub-tasks and the atomic actions of two agents respectively, each

of which specifies a series of consecutive time intervals where the joint sub-task or the atomic
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Figure 5.4: A sequence of parse graphs in a shaking hands interaction, which yields the temporal

parsing of joint sub-tasks and atomic actions depicted by the colored bars (colors indicate the labels

of joint sub-tasks or atomic actions).

action remains the same in each interval. Hence, in τJk = [t1k, t
2
k], j

t = j(τJk ), ∀t ∈ τJk , and for

agent i, sti = si(τ
S
ik), ∀t ∈ τSik in τS1k = [t1ik, t

2
ik]. Figure 5.4 shows an example of the temporal

parsing from the parse graph sequence. Note the numbers of time intervals of these three types of

temporal parsing, i.e., KJ , KS
1 , and KS

2 , may be different. Such flexible temporal parsing allows

us to model long-term temporal dependencies among atomic actions and joint sub-tasks.

5.5 Probabilistic Model

We propose a probabilistic model for our social affordance grammar model.

Given the motion grounding, Γ, the posterior probability of a parse graph sequence PG is

defined as

p(PG|Γ) ∝ p({ΓAi }i=1,2|PG)︸ ︷︷ ︸
arm motion likelihood

p(ΓR|PG)︸ ︷︷ ︸
relation likelihood

p(PG)︸ ︷︷ ︸
parsing prior

. (5.1)

Conditioned on the temporal parsing of atomic actions and joint sub-tasks, the likelihood terms

model the arm motion and the relations respectively, whereas the parsing prior models the temporal

dependencies and the concurrency among joint sub-tasks and atomic actions. We introduce these

three terms in the following subsections.
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5.5.1 Arm Motion Likelihood

First, we define three types of basic potentials that are repeatedly used in the likelihood terms:

1) Orientation potential ψo(θ). This potential is a von Mises distribution of the orientation

variable θ. If θ has multiple angular variables, e.g., the four joint angles θ = 〈s0, s1, e0, e1〉, then

the potential is the product of the von Mises distributions of these individual angular variables.

2) Three-dimensional motion potential ψ3v(x). Assuming that spherical coordinate of x is

(r, θ, φ), the potential is characterized by three distributions, i.e., ψ3v(x) = p(r)p(θ)p(φ), where

the first one is a Weibull distribution and the remaining are von Mises distributions.

3) Two-dimensional position potential ψ2v(x). We fit a bivariate Gaussian distribution for x

in this potential.

For joint angles and hand positions in an atomic action, we are interested in their final statuses

and change during the atomic action. Thus, for the limb l of agent i in the interval τSik assigned

with atomic action si(τSik) ∈ Sc such that sti = si(τ
S
ik), ∀t ∈ τSik, the arm motion likelihood

p(Θil, Hil|τSik, si(τSik)) ∝ ψo(θ
t′

il − θtil)︸ ︷︷ ︸
joint angles’s change

ψo(θ
t′

il)︸ ︷︷ ︸
final joint angles

ψ3v(h
t′

il − htil)︸ ︷︷ ︸
hand movement

ψ3v(h
t′

il)︸ ︷︷ ︸
final hand position

, (5.2)

where t = t1ik and t′ = t2ik are the starting and ending moments of τSik. Assuming independence

between the arms, the arm motion likelihood for agent i in τSik is

p(ΓAi |τSik, s(τSik)) =
∏
l

p(Θil, Hil|τSik, si(τSik)), (5.3)

and the arm motion likelihood for the entire interaction is

p(ΓAi |PG) =
∏
k

p(ΓAi |τSik, s(τSik)). (5.4)

Finally, the overall arm motion likelihood is the product of two agents’ arm motion likelihood,

i.e.,

p({ΓAi }i=1,2|PG) =
∏
i

p(ΓAi |PG). (5.5)

71



5.5.2 Relation Likelihood

Relation likelihood models the spatiotemporal patterns hidden in facing directions O, base posi-

tions X , and the distances between two agents’ hands during a joint sub-task. In a interval τJk with

the same joint sub-task label j(τJk ) such that jt = j(τJk ), ∀t ∈ τJk , the relation likelihood is

p(ΓR|τJk , j(τJk )) ∝ ψo(o
t′)︸ ︷︷ ︸

facing direction

ψ2v(x
t′)︸ ︷︷ ︸

base position

·
∏
l,l′

ψ3v(d
t′

ll′)︸ ︷︷ ︸
final hand distance

ψ3v(d
t′

ll′ − dtll′)︸ ︷︷ ︸
distance change

, (5.6)

where τJk starts at t = t1k and ends at t′ = t2k.

Hence, the overall relation likelihood can be written as

p(ΓR|PG) =
∏
k

p(ΓR|τJk , j(τJk )). (5.7)

5.5.3 Parsing Prior

The prior of a sequence of parse graphs is defined by the following terms:

p(PG)=
∏
k

p
(
|τJk | | j(τJk )

)
︸ ︷︷ ︸

duration prior of joint sub-tasks

·
∏
k

p
(
|τS1k| | s1(τS1k)

)∏
k

p
(
|τS2k| | s2(τS2k)

)
︸ ︷︷ ︸

duration prior of atomic actions∏
k>1

p
(
s1(τS1k)|s(τS1k−1)

)
︸ ︷︷ ︸

action transition for agent 1

∏
k>1

p
(
s2(τS2k)|s(τS2k−1)

)
︸ ︷︷ ︸

action transition for agent 2

·
∏
t

p(st1|jt)p(sj2|jt)︸ ︷︷ ︸
concurrency

∏
k>1

p
(
j(τJk )|j(τJk−1)

)
︸ ︷︷ ︸

joint sub-task transition

,

(5.8)

where the duration priors follow log-normal distributions and the remaining priors follow multino-

mial distributions.

5.6 Learning

The proposed ST-AOG can be learned in a weakly supervised manner, where we only specify the

generic dictionaries of attributes and the sizes of the dictionaries of joint sub-tasks and atomic
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Figure 5.5: The curves show how the joint angles of agent 2’s two arms change in an shaking hands

interaction. The black dashed indicate the interval proposals from the detected turning points.

actions for each interaction. Given N training instances, Γ = {Γn}n=1,··· ,N , of an interaction

category, where Γn = 〈{ΓAi }i=1,2,Γ
R
i 〉 is the motion grounding of instance n, the goal of learning

is to find the optimal parsing graph sequence, PGi, for each instance by maximizing the posterior

probability defined in Eq. (5.1); then the ST-AOG is easily constructed based on the parse graphs.

It is intractable to search for the optimal parsing of atomic actions and joint sub-tasks simulta-

neously, which will take an exponential amount of time. Instead, we first 1) parse atomic actions

for each agent independently and then 2) parse joint sub-tasks. Based on the likelihood distribu-

tions from the parsing results, we may 3) further obtain the implied attributes for each type of joint

sub-tasks and atomic actions. We introduce the details in the rest of this section.

5.6.1 Atomic Action Parsing

We expect the motion in an atomic action to be consistent. Since the arm motion is characterized

by joint angles and hand positions, the velocities of joints and hand movements should remain the

same in an atomic action. Following this intuition, we propose the time intervals for the atomic

actions of an agent by detecting the turning points of the sequences of joint angles (see Figure 5.5),

which will naturally yields time intervals of atomic actions. To make the angles directly compara-

ble, they are all normalized to the range of [0, 1].

To detect such turning points, we introduce a entropy function for a sequence {xt}, i.e., E(t, w),

where t is the location of interest and w is the window size. To compute E(t, w), we first count
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the histogram of the changes between consecutive elements, i.e., xt − xt−1 in the sub-sequence

{xt′}t′=t−w,,t+w, and then E(t, w) is set to be the entropy of the histogram. By sliding windows

with different sizes (w = 2, 5, 10, 15), we may detect multiple locations with entropy that is higher

than a given threshold. By non-maximum suppression, the turning points are robustly detected.

After obtaining the time intervals, we assign optimal atomic action labels to each interval by

Gibbs sampling. At each iteration, we choose an interval τ and sample a new label s for it based

on the following probability:

s ∼ p(ΓAi | τ, s)p(τ, s | T Si \τ, Si\{sti}t∈τ ). (5.9)

Here, p(ΓAi | τ, s) is the likelihood in Eq. (5.3), and based on the parsing prior in Eq. (5.8), the

labeling prior is computed as

p(τ, s | T Si \τ, Si\{sti}t∈τ ) = p(s | s′)p(s′′ | s)p(|τ | | s), (5.10)

where s′ and s′′ are the preceding and following atomic action labels in the adjacent intervals of

τ . If either of them is absent, the corresponding probability is then set to be 1. For each new label

assignment, the parameters of the related likelihood and prior distributions should be re-estimated.

To ensure the distinctness between adjacent intervals, s can not be the same labels of the adjacent

intervals.

Therefore, after randomly assigning labels for the intervals as initialization, we conduct multi-

ple sweeps, where in each sweep, we enumerate each interval and sample a new label for it based

on Eq. (5.9). The sampling stops when the labeling does not change after the last sweep (con-

vergence). In practice, the sampling can converge within 100 sweeps coupled with a simulated

annealing.

5.6.2 Joint Sub-Task Parsing

The joint sub-task parsing is achieved using a similar approach as atomic action parsing. We first

propose the time intervals by detecting turning points based on the normalized sequences of O, X ,

and D. Then the labeling can also be optimized by a Gibbs sampling, where at each iteration, we

74



sample a new joint sub-task label j for an interval τ by

j ∼ p(ΓR | τ, j)p(τ, j | T J\τ, SJ\{jt}t∈τ ), (5.11)

where p(ΓR | τ, j) is defined in Eq. (5.6) and the prior probability is derived from Eq. (5.8) as

p(τ, j | T J\τ, SJ\{jt}t∈τ ) = p(j | j′)p(j′′ | j)p(|τ | | j)
∏
t∈τ

p(st1 | j)p(st2 | j). (5.12)

Similar to Eq. (5.9), j′ and j′′ in the above prior probability are the preceding and following inter-

vals’ joint sub-task labels. The corresponding transition probability is assumed to be 1 if either of

the adjacent interval does not exist. We also constrain j to be different from the j′ and j′′ if they

exist.

5.6.3 Constructing ST-AOG

After the previous two Gibbs sampling processes, the parameters of our probabilistic model are all

estimated based on the parse graph sequences {PGn}n=1,··· ,N . The ST-AOG of category c is then

constructed by the following three steps:

Initialization. We start form a “complete” graph, where each non-leaf node is connected to all

related lower level nodes (e.g., all joint sub-tasks, all atomic actions of the corresponding agent,

etc.), except attribute leaf nodes.

Edge removal. Any edge between two joint sub-task nodes or two atomic action nodes is

removed if it has a transition probability lower than a threshold (0.05). For each joint sub-task

node, remove the edges connecting the OR node of agent i to the atomic actions whose concur-

rency priors under the joint sub-task are lower than 0.1. Note that we use these thresholds for all

interactions.

Attributes bundling. Motion attributes: For each type of atomic action s of agent i, a moving

attribute is bundled to a limb if the mean of the corresponding hand movement distribution specified

in Eq. (5.2) is lower than a threshold (we use 0.2 m in practice); otherwise, a static attribute is

bundled to the limb instead. Relation attributes: A type of joint sub-task will be associated with a

holding attribute between a pair of hands (or a hand and an object) if the mean final hand distance
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Figure 5.6: The learned ST-AOG for the Shake Hands interaction (the motion grounding is not

drawn in this figure due to the space limit). The numbers under AND nodes are the labels of

joint sub-tasks or atomic actions. The edges between the atomic actions show the “followed by”

temporal relations and their colors indicate which atomic actions are the edges’ starting point.

Similarly, the joint sub-tasks are also connected by edges representing the temporal dependencies

between them. There is an example of each atomic actions from our training data, where the

skeletons are overlaid with colors from light to dark to reflect the temporal order. The attributes

that are not bundled to any atomic action or joint sub-task are not shown here.

is lower than 0.15 m and the mean hand distance’s change is lower than 0.1 m according to the

corresponding distributions in Eq. (5.6). If only the mean final hand distance meets the standard,

an approaching will be attached. For the case of multiple qualifying pairs for a hand, the one with

the shortest mean distance is selected.

Figure 5.6 is a learned ST-AOG for Shake Hands interactions. It can be seen that our learn-

ing algorithm indeed mines the critical elements of the interactions and clearly represents their

relations through the structure of the ST-AOG.

5.7 Real-time Motion Inference

If we replace agent 2 with a humanoid, we can therefore design a real-time motion inference

enabling human-robot interaction based on the learned ST-AOG by sampling parse graphs and

controlling the robot’s motion accordingly.

For this, we propose two levels of inference procedures: 1) robot motion generation given
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the parse graphs, which is essentially transferring the socially appropriate motion from agent 2 in

the grammar model to a humanoid; 2) parse graph sampling given the observation of the human

agent’s actions and the relation between the human agent and the robot according to the learned

social affordance grammar.

5.7.1 Robot Motion Generation

As shown in Figure 5.3, we may use the motion grounding of agent 2 for the robot by joint map-

ping. The robot motion can be generated by sampling agent 2’s base position xt, facing direction

(i.e., base orientation of the robot) ot, joint angles {θ2l}l=1,2, and hand positions (i.e., end effector

positions) {ht2l}l=1,2 at each time t based on the motion history of agent 2, ΓA2 (t − 1), and the

spatiotemporal relations, ΓR(t − 1), upon t − 1 as well as the agent 1’s motion, ΓA1 (t), and parse

graphs, PG(t) = {pgτ}τ=1,··· ,t, upon t.

Since the arm motion is relative to the base position in our motion grounding, we first sample

xt and ot w.r.t. the relative position and facing direction likelihood in Eq. (5.6), the likelihood

probabilities of which must be higher than a threshold (0.05 for xt and 0.3 for ot). To avoid jitter,

we remain the previous base position and rotation if they still meet the criteria at t.

Then we update the joint angles for each robot arm. Without the loss of generality, let us

consider a single arm l ∈ {1, 2}. According to the atomic action st2, we may sample desired joint

angles θ̂t2l and hand position ĥt2l w.r.t the corresponding likelihood terms in Eq. (5.2). Since we

do not model the wrist orientations, the desired ŵ0, ŵ1, ŵ2 are always set to be 0 if the robot arm

has these degrees of freedom (Figure 5.3a). If current joint sub-task entails an “approaching” or

“holding” attribute for this limb, the desired hand position is set to the position of the target hand or

object indicated by the attribute instead. To enforce the mechanical limits and collision avoidance,

we minimize a loss function to compute the final joint angels θtil for the robot arm:

min
θ∈Ωθ

ωh||fl(θ)− ĥt2l||22︸ ︷︷ ︸
hand position loss

+ωa||θ − θ̂t2l||22︸ ︷︷ ︸
joint angle loss

+ωs||θ − θt−1
il ||22︸ ︷︷ ︸

smoothness loss

, (5.13)

where fl(θ) is the end effector position of θ based on the forward kinematics of the robot arm l;

Ωθ is the joint angle space that follows the mechanical design (angle ranges and speed limits of
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Algorithm 3 Parse Graph Sampling
Input: The initial motion of two agents in [1, T0], i.e., Γ(T0)

1: Infer PG(T0) by maximizing the posterior probability in Eq. (5.1)

2: Let t← T0 + 1

3: repeat

4: Γ′ = Γ(t− 1) ∪ {θt1l}l=1,2 ∪ {ht1l}l=1,2

5: Infer current atomic action of agent 1 by

st1 = argmaxs p(PG(t− 1) ∪ {s} | Γ′)
6: for all jt ∈ J , st2 ∈ Sc2 that are compatible with st1 do

7: pgt ← 〈jt, st1, st2〉
8: PG(t)← PG(t− 1) ∪ {pgt}
9: Sample a new robot status at t, i.e., xt, ot, {θt2l} and {ht2l}, as introduced in Section 5.7.1

10: Γ(t)← Γ(t− 1) ∪ {θtil,htil}i,l=1,2 ∪ {xt} ∪ {ot}
11: Compute the posterior probability p(PG(t) | Γ(t))

12: end for

13: Choose the pgt and the corresponding new robot status that yield highest posterior probability

to execute and update PG(t) and Γ(t) accordingly
14: t← t+ 1

15: until t > T

arm joints) and the collision avoidance constraints, and ωh, ωa, ωs are weights for the three types

of loss respectively. By assigning different weights, we can design three control modes that are

directly related to the attributes in ST-AOG:

1) Hand moving mode: if “approaching” or “holding” attributes are present in the current joint

sub-task, we may use a larger ωh to ensure an accurate hand position;

2) Static mode: if the first case does not hold and the atomic action has a “static” attribute for

the limb, then ωs should be much larger than ωh and ωa;

3) Motion mimicking mode: if none of the above two cases hold, we emphasize on joint angle

loss (i.e., a large ωa) to mimic the human arm motion.

In practice, we set the large weight to be 1 and the other two may range from 0 to 0.1.
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Table 5.1: A summary of our new dataset (numbers of instances).

Category Scenario 1 Scenario 2 Scenario 3 Scenario 4 Total

Shake Hands 19 10 0 0 29

High Five 18 7 0 23 48

Pull Up 21 16 9 0 46

Wave Hands 0 28 0 18 46

Hand Over 34 6 8 7 55

5.7.2 Parse Graph Sampling

The Parse graph sampling algorithm is sketched in Alg. 3. The basic idea is to first recognize the

action of agent 1. Then following the ST-AOG, we may enumerate all possible joint sub-tasks

and atomic actions of agent 2 that are compatible with agent 1’s atomic action, and sample a new

robot status for each of them. Finally, we choose the one with the highest posterior probability to

execute. Note that the facing direction of an agent is approximated by his or her moving direction

(if not static) or the pointing direction of feet (if static).

5.8 Experiments

Dataset. There are two existing RGB-D video datasets for human-human interactions [YHC12,

SRZ16], where the instances within the same category are very similar. To enrich the activities,

we collected and compiled a new RGB-D video dataset, UCLA Human-Human-Object Interaction

(HHOI) dataset V2, on top of [SRZ16] using Kinect v2 as summarized in Table 5.1, where Wave

Hands is a new category and the instances in scenario 1 of the other categories are from [SRZ16].

For Pull Up, the first 3 scenarios are: A2 (agent 2) stands while A1 (agent 1) is sitting 1) on the

floor or 2) in a chair; 3) A1 sits in a chair and A2 approaches. For the other categories, the four

scenarios stand for: 1) both stand; 2) A1 stands and A2 approaches; 3) A1 sits and A2 stands

nearby; 4) A1 sits and A2 approaches. In the experiments, we only use three fourths of the videos
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in scenario 1 (for Wave Hands, it is scenario 2) as training data, and the remaining instances are

used for testing. The dataset has been released at https://tshu.io/SocialAffordanceGrammar.

Baselines. We compare our approach with two baselines adopted from related methods, ex-

tending these method further to handle our problem. The first one (B1) uses the method proposed

in [SRZ16] to synthesize human skeletons to interact with the given human agent, from which we

compute the desired base positions, joint angles and hand positions for the optimization method

defined in Eq. (5.13). Since [SRZ16] only models the end positions of the limbs explicitly and

do not specify multiple modes as ours do, we use it with the weights of hand moving mode. The

second baseline (B2) uses our base positions and orientations but solve the inverse kinematics for

the two arms using an off-the-shelf planner, i.e., RRT-connect [KL00] in MoveIt! based on the

desired hand positions from our approach.

5.8.1 Experiment 1: Baxter Simulation

We first implement a Baxter simulation and compare the simulated robot behaviors generated from

ours and the two baselines. For each testing instance, we give the first two frames of skeletons of

two agents as the initialization; we then update the human skeleton and infer the new robot status

accordingly at a rate of 5 fps in real-time. For Hand Over, we assume that the cup will stay in the

human agent’s hand unless the robot hand is close to the center of the cup (< 10 cm) for at least

0.4 s. Note that the planner in B2 is extremely slow (it may take more than 10 s to obtain a new

plan), so we compute B2’s simulations in an offline fashion and visualize them at 5 fps. Ours and

B1 can be run in real-time.

Figure 5.7 shows a simulation example for each interaction. More results are included in the

video attachment. From the simulation results, we can see that the robot behaviors (standing

positions, facing directions and arm gestures) generated by ours are more realistic than the ones

from baselines. Also, thanks to the learned social grammar, the robot can adapt itself to unseen

situations. E.g., human agents are standing in the training data for “High Five”, but the robot can

still perform the interaction well when the human agent is sitting.

We also compare the mean joint angle difference between the robot and the ground truth (GT)
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Figure 5.7: Qualitative results of our Baxter simulation.

Table 5.2: Mean joint angle difference (in radius degree) between the simulated Baxter and the

ground truth skeletons.

Method Shake Hands High Five Pull Up Wave Hands Hand Over

B1 0.939 0.832 0.748 0.866 0.867

B2 0.970 0.892 0.939 0.930 0.948

Ours 0.779 0.739 0.678 0.551 0.727

human skeletons (i.e., agent 2) captured from Kinect as reported in Table 5.2, which is one of

the two common metrics of motion similarity [ARA17] (the other one, i.e., comparing the end-

effector positions, is not suitable in our case since humans and robots have different arm lengths).

Although the robot has a different structure than humans’, ours can still generate arm gestures that

are significantly closer to the GT skeletons than the ones by baselines are.
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Table 5.3: Human subjects’ ratings of Baxter simulation generated by the three methods based on

the two criteria.

Source Shake Hands High Five Pull Up Wave Hands Hand Over

Q1

B1 3.22 ± 1.30 2.13 ± 1.09 2.75 ± 0.91 2.59 ± 1.20 2.19 ± 1.12

B2 2.14 ± 0.56 3.07 ± 1.22 2.11 ± 0.94 2.47 ± 0.69 1.48 ± 0.52

Ours 4.45 ± 0.61 4.79 ± 0.41 4.53 ± 0.61 4.82 ± 0.52 4.63 ± 0.53

Q2

B1 2.89 ± 0.99 2.38 ± 0.96 2.75 ± 0.55 2.00 ± 1.17 2.45 ± 0.71

B2 2.14 ± 0.83 2.93 ± 0.80 2.32 ± 1.00 1.60 ± 0.69 1.82 ± 0.63

Ours 4.20 ± 0.75 4.17 ± 0.62 4.25 ± 0.79 4.65 ± 0.72 3.97 ± 0.61

5.8.2 Experiment 2: Human Evaluation

To evaluate the quality of our human-robot interactions, we showed the simulation videos of three

methods to 12 human subjects (UCLA students) who did not know that videos were from different

methods. Subjects first watched two RGB videos of human interactions per category. Then for

each testing instance, we randomly selected one method’s simulation to a subject. The subjects

only watched the assigned videos once and rated them based on two criteria: i) whether the purpose

of the interaction is achieved (Q1), and ii) whether the robot’s behavior looks natural (Q2). The

ratings range from 1 (total failure/awkward) to 5 (successful/human-like).

The mean ratings and the standard deviations are summarized in Table 5.3. Our approach

outperforms the baselines for both criteria and has smaller standard deviations, which manifests its

advantages on accurately achieving critical latent goals (e.g., holding hands) while keeping human-

like motion. The rigid representation and failing to learn explicit hand relations affect B1’s ability

to adapt the robot to various scenarios. It also appears that only using a simple IK (B2) is probably

insufficient: its optimization is only based on the current target position, which often generate a

very long path and may lead to an awkward gesture. This makes the future target positions hard to

reach as the target (e.g., a human hand) is constantly moving.
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Figure 5.8: Qualitative results of the real Baxter test.

5.8.3 Experiment 3: Real Baxter Test

We test our approach on a Baxter research robot with a mobility base (Figure 5.8). A Kinect sensor

is mounted on the top of the Baxter’s head to detect and track human skeletons. To compensate the

noise from Kinect, we further take advantage of the pressure sensors on the ReFlex TakkTile Hand

(our Baxter’s right hand) to detect holding relations between the agents’ hands. Although the arm

movement is notably slower than the simulation due to the mechanical limits, the interactions are

generally successful and reasonably natural.

Since we only need joints on the upper body, the estimation of which is relatively reliable, the

noisy Kinect skeletons usually do not greatly affect the control. In practice, temporal smoothing

of the skeleton sequences is also helpful.

83



5.9 Conclusion

We propose a general framework of learning social affordance grammar as a ST-AOG from hu-

man interaction videos and transferring such knowledge to human-robot interactions in unseen

scenarios by a real-time motion inference based on the learned grammar. The experimental results

demonstrate the effectiveness of our approach and its advantages over baselines. In the future, it is

possible to integrate a language model into the system to achieve verbal communications between

robots and humans. In addition, human intention inference can also be added to the system.
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CHAPTER 6

Perception of Human Interaction in Decontextualized

Animations

6.1 Introduction

People are adept at perceiving goal-directed action and inferring social interaction from movements

of simple objects. In their pioneering work, [HS44] presented video clips showing three simple

geometrical shapes moving around, and asked human observers to describe what they saw. Almost

all observers described the object movements in an anthropomorphic way, reporting a reliable

impression of animacy and meaningful social interactions among the geometric shapes displayed in

the decontextualized animation. Their results were replicated in other studies using similar videos

for both human adults [OY85, RBL85] and preschoolers as young as five years old [SMB96].

To study what visual information drives the perception of interaction, [BMK92] generated new

Heider-Simmel animations with either the structural aspect or dynamic aspect disrupted. They

found that the motion patterns mainly determined the anthropomorphic description of videos. Later

studies [DL94, ST00, TF00, TF06, GNS09, GMS10] used more controlled stimuli and systemat-

ically examined what factors can impact the perception of goal-directed actions in a decontextu-

alized animation. These findings provided converging evidence that the perception of human-like

interactions relies on some critical low-level motion cues, such as speed and motion direction.

However, it remains unclear how the human visual system combines motion cues from different

objects to infer interpersonal interactivity in the absence of any context cues.

To address this fundamental question, [BST09] developed a Bayesian model to reason about the

intentions of an agent when moving in maze-like environments of the sort used by [HS44]. Other
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studies [BGT08, UBM10, BST11, Bak12, SK12] developed similar models that could be general-

ized to situations with multiple agents and different contexts. These modeling studies illustrate the

potential fruitfulness of using a Bayesian approach as a principled framework for modeling human

interaction shown in decontextualized animations. However, these models have been limited to

experimenter-defined movements, and by computational constraints imposed by the modelers for

particular application domains.

In daily life, humans rarely observe Heider-Simmel-type animations. Although examining in-

ferences about human interactions in videos of daily-life activities would be ecologically natural,

challenges arise. Human interactions are usually accompanied by rich context information, such

as language, body gestures, moving trajectories of multiple agents, and backgrounds in the envi-

ronment. Hence, the complexity of information may make it difficult to pin down what critical

characteristics in the input determine human judgments.

To address this problem, we used aerial video and employed advanced computer vision al-

gorithms to generate experimental stimuli that were rigorously controlled but rooted in real-life

situations. As an example, imagine that you are watching a surveillance video recorded by a drone

from a bird’s eye view, as shown in Fig. 6.1. In such aerial videos, changes in human body pos-

tures can barely be seen, and the primary visual cues are the noisy movement trajectories of each

person in the scene. This situation is analogous to the experimental stimuli used in Heider and

Simmel animations, but the trajectories of each entity are directly based on real-life human move-

ments. Another advantage of using aerial videos is that they provide a window to examine whether

a model trained with real-life motions can generalize its learned knowledge to interpret decontex-

tualized movements of geometric shapes, without prior exposures. Such generalizability emulates

humans’ irresistible and automatic impressions when viewing the Heider-Simmel animations for

the first time. If the generalization is successful, the cues used by the model in learning can shed

light on the mechanisms underlying the human ability to recover the causal and social structure of

the world from the visual inputs.

In the present study, we aimed to use real-life aerial videos to generate Heider-Simmel-type de-

contextualized animations and to assess how human judgments of interactivity emerge over time.

We employed decontextualized animations generated from the aerial videos to measure how well

86



humans make online judgments about interpersonal interactions, and to gauge what visual cues

determine the dynamic changes in human judgments. To account for human performance, we de-

veloped a hierarchical model with hidden layers. The model aimed to learn the representations of

critical movement patterns that signal potential interactivity between agents. Furthermore, we as-

sessed whether the learning component in the model can be generalized to the original animations

used by [HS44].

Figure 6.1: Stimulus illustration. (Left) An example frame of an aerial video recorded by a drone.

Two people were being tracked (framed by red and green boxes). (Right) A sample frame of an

experimental trial. The two people being tracked in the aerial video are presented as two dots,

one in red and one in green, against a black background. A video demonstration can be viewed at

https://tshu.io/HeiderSimmel/CogSci17.

6.2 Computational Model

We designed a hierarchical model with three layers. As shown in Fig. 6.2, the first layer (the X

layer) estimates spatiotemporal motion patterns within a short period of time. The second layer

(the S layer) captures the involvement of various motion fields at different stages of interactivity

over a long period by temporally decomposing interactivity into multiple latent sub-interactions.

The last layer (the Y layer) indicates the presence or absence of interactivity between two agents.

The inputs to the model are motion trajectories of two agents, denoted as Γa = {xta}t=0,··· ,T ,

a = 1, 2. The position of agent a (a = 1, 2) at time t is xta = (x, y). The total length of the trajec-
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tory is T . Using the input of motion trajectories, we can readily compute the velocity sequence of

agent a (a = 1, 2), i.e., Va = {vta}t=1,··· ,T , where vta = xta − xt−1
a .

To capture the interactivity between two agents based on the observed trajectories of move-

ments, the model builds on two basic components. (1) Interactivity between two agents can be

represented by a sequence of latent motion fields, each capturing the relative motion between the

two agents who perform meaningful social interactions. (2) Latent motion fields can vary over

time, capturing the behavioral change of the agents over a long period of time. The details for

quantifying the two key components are presented in the next two subsections.

6.2.1 Conditional Interactive Fields

xt
2

yk

sKs1 …

xt
1

sk

t 2 Tk t 2 Tk

…

… …

y1 yK

Figure 6.2: Illustration of the hierarchical generative model. The solid nodes are observations of

motion trajectories of two agents, and the remaining nodes are latent variables constituting the

symbolic representation of an interaction, i.e., the original trajectories are coded as a sequence of

sub-interactions S and interaction labels Y .

As illustrated in Fig. 6.3, we use conditional interactive fields (CIFs) to represent how an agent

moves with respect to a reference agent. This is analogous to the force fields in Physics, where

the objects interact with each other through invisible fields (e.g., gravity). To derive the CIFs, we

randomly select an agent to be the reference agent, and then model the partner agent’s movement

by estimating a vector field of the relative motion conditioned on a specific distribution of the
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reference agent’s motion.

To ensure that the fields are orientation invariant, we perform a coordinate transformation,

as Fig. 6.3 illustrates. At each time point t, the transformed position of the reference agent is

always located at (0, 0), and its transformed velocity direction is always pointed to the norm of

the upward vertical direction. Consequently, the position and velocity of the second agent after

the transformation, i.e., Γ̃ = {x̃t}t=0,··· ,T and Ṽ = {ṽt}t=1,··· ,T , can be used to model the relative

motion.

A sub-interaction s corresponds to interactivity in a relatively short time sharing consistent

motion patterns, e.g., approaching, walking together, standing together. The model can infer its

CIF using a potential function U(x̃t, ṽt,vt1), where the first two variables (x̃t, ṽt) are used to

model the relative motion as defined in the last paragraph and vt1 is the reference agent’s motion.

The potential function is defined to yield the lowest potential value if the motion pattern fits the

characteristics of s the best. In this way, the model considers the agents more likely to be interactive

if the agents are moving in a specific way that can minimize the potential energy w.r.t. certain

potential fields.

(0,0)

(0,0)

Coordinate
Transformation =

Ref. Agent
Condition Interactive Field

+
xt

2

vt
2

ṽt

x̃t

Figure 6.3: Illustration of a conditional interactive field (CIF): after a coordinate transformation

w.r.t. the reference agent, we model the expected relative motion pattern x̃t and ṽt conditioned on

the reference agent’s motion.

6.2.2 Temporal Parsing by Latent Sub-Interactions

We assume that a long interactive sequence can be decomposed into several distinct sub-interactions

each with a different CIF. For example, when observing that two people walk towards each other,
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Figure 6.4: Temporal parsing by S (middle). The top demonstrates the change of CIFs in sub-

interactions as the interaction proceeds. The bottom indicates the change of interactive behaviors in

terms of motion trajectories. The colored bars in the middle depict the types of the sub-interactions.

shake hands and walk together, this long sequence can be segmented into three distinct sub-

interactions. We represent meaningful interactivity as a sequence of latent sub-interactions S =

{sk}k=1,...,K , where a latent sub-interaction determines the category of the CIF involved in a time

interval Tk = {t : t1k ≤ t ≤ t2k}, such that st = sk, ∀t ∈ Tk. sk is the sub-interaction label in the

k-th interval representing the consistent interactivity of two agents in the relatively short interval.

Fig. 6.4 illustrates the temporal parsing.

In each interval k, we define an interaction label yk ∈ {0, 1} to indicate the absence or presence

of interactivity between the two agents. The interaction labels also constitute a sequence Y =

{yt}t=1,··· ,T . We have yt = yk, ∀t ∈ Tk, where yk denotes the interaction label in an interval Tk.

6.3 Model Formulation

Given the input of motion trajectories Γ as defined in the above section, the model infers the

posterior distribution of the latent variables S and Y using a Bayesian framework,

p(S, Y |Γ) ∝ P (Γ | S, Y )︸ ︷︷ ︸
likelihood

·P (S | Y )︸ ︷︷ ︸
sub int. prior

· P (Y )︸ ︷︷ ︸
int. prior

. (6.1)

The likelihood assesses how well the motion fields represented as a set of sub-interactions

CIFs can account for relative motion observed in the video input, the spatial density of the relative

90



position, and the observed motion of the reference agent:

p(Γ | S, Y ) =
K∏
k=1

∏
t∈Tk

p(ṽt, x̃t,vt1 | st = sk, y
t = yk), (6.2)

where the individual likelihood terms are defined by potential functions:

log p(ṽt, x̃t,vt1 | st = sk, y
t = yk) ∝ −U(x̃t, ṽt,vt1|sk, yk). (6.3)

Here, we assume that the potential function depends on the latent variables sk and yk to account

for the variability in the motion patterns of different sub-interactions and to differentiate interactive

motion from non-interactive motion. Eq. (6.3) also ensures that the expected interactive motion

trajectories will move in the direction that minimizes the potential energy. We define the potential

function in Eq. (6.3) as

U(ṽt, x̃t,vt1 | st = sk, y
t = yk) = w>sk,ykφ(x̃t, ṽt,vt1) + βsk,yk , (6.4)

where φ(x̃t, ṽt,vt1) = [x̃t>, ṽt>,vt>1 , x̃t
>
ṽt, ||x̃t||, ||ṽt||, ||vt1||]

>
is the motion feature vector used

to characterize the potential field, wsk,yk and βsk,yk are coefficients of the potential function learned

for the specific latent variables sk and yk. There are certainly other ways to specify the potential

function taking more motion patterns into account, such as acceleration, environment around the

agents, and other possible factors of interest.

We model the prior term of sub-interactions P (S|Y ) using two independent components, i)

the duration of each sub-interaction, and ii) the transition probability between two consecutive

sub-interactions, as follows:

p(S | Y ) =
K∏
k=1

p(|Tk||sk, yk)︸ ︷︷ ︸
duration

K∏
k=2

p(sk|sk−1, yk)︸ ︷︷ ︸
transition

. (6.5)

When yk = 1, the two terms follow a log-normal distribution and a multinomial distribution,

respectively; when yk = 0, uniform distributions are used for the two terms instead.

Finally, we use a Bernoulli distribution to model the prior term of interactions P (Y ),

p(Y ) =
K∏
k=1

∏
t∈Tk

p(yt = yk) =
K∏
k=1

∏
t∈Tk

ρy
t

(1− ρ)1−yt . (6.6)
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6.4 Inference and Prediction

The model infers the current status of latent variables and produces an online prediction of future

trajectories. Inference and prediction are performed for each time point from 1 to T sequentially

(rather than offline prediction, which gives the labels after watching the entire video).

We denote trajectories from 0 to t as Γ0:t, and the sub-interactions from 1 to t − 1 as S1:t−1.

Without loss of generality, we assume there are K sub-interactions in S1:t−1 with TK being the

last interval and st−1 = sK . We first infer st under the assumption of interaction (i.e., yt = 1) by

maximizing

p(st | Γ0:t, S1:t−1, y
t) ∝ p(ṽt, x̃t, vt1 | st, yt)p(st | S1:t−1, y

t), (6.7)

where,

p(st | S1:t−1, y
t) =

 p(τ ≥ |Tk|+ 1 | st = st−1, yt) if st = st−1

p(τ ≥ 1 | st, yt)p(st|st−1) otherwise
. (6.8)

Then the posterior probability of yt = 1 given st ∈ S is defined as

p(yt | st,Γ0:t, S1:t−1) ∝ p(st | Γ0:t, S1:t−1, y
t)p(yt), (6.9)

This computation makes it possible to perform the following inferences and online prediction:

i) we maximize Eq. (6.7) to obtain the optimal st; ii) we use Eq. (6.9) to compute the posterior

probability of two agents being interactive at t under the CIF of st as an approximation of the judg-

ment of interaction/non-interaction provided by human observers; iii) the model can synthesize

new trajectories using the following computation,

st+1 ∼ p(st+1 | S1:t, y
t+1), (6.10)

xt+1
1 ,xt+1

2 ∼ p(x̃t+1, ṽt+1, vt+1
1 |st+1, yt+1), (6.11)

where ṽt+1, x̃t+1, and vt+1
1 are given by xt1, xt+1

1 , xt2 and xt+1
2 . By setting yt+1 = 1 or yt+1 = 0

in Eq. (6.10) and Eq. (6.11), we may synthesize interactive or non-interactive motion trajectories

respectively.
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6.5 Learning

To train the model, we used Gibbs sampling to find the S that maximizes the joint probability

P (Y, S,Γ). The implementation details are summarized below:

• Step 0: To initialize S, we first construct a feature vector for each time t (see the Appendix

A). K-means clustering is then conducted to obtain the initial {st}, which also gives us the

sub-interaction parsing S after merging the same consecutive st.

• Step 1: At each time point t of every training video, we update its sub-interaction label st by

st ∼ p(Γ | S−t ∪ {st}, Y )p(S−t ∪ {st} | Y ), (6.12)

where S−t is the sub-interaction temporal parsing excluding time t, and S−t ∪ {st} is a new

sub-interaction sequence after adding the sub-interaction at t. Note that Y is always fixed in

the procedure; thus we do not need p(Y ) term for sampling purpose.

• Step 2: If S does not change anymore, go to next step; otherwise, repeat step 1.

• Step 3: Since we do not include the non-interactive videos in the training set, we selected 22

videos in the first human experiment (a mixture of interactive and non-interactive videos) as

a validation set to estimate coefficients of the potential functions under y = 0 by maximizing

the correlation between the model prediction of Eq. (6.9) and the average human responses

in the validation set. To simplify the search, we assume all potential functions under y = 0

share the same coefficients across all latent sub-interactions.

6.6 Model Simulation Results

We trained the model using two sets of training data, the UCLA aerial event dataset [SXR15] and

the Heider-Simmel animation dataset.
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6.6.1 Training with Aerial Videos

In the UCLA aerial event dataset collected by [SXR15], about 20 people performed some group

activities in two scenes (a park or a parking lot), such as group touring, queuing in front of a vend-

ing machine or playing Frisbee. People’s trajectories and their activities are manually annotated.

The dataset is available at https://tshu.io/AerialVideo/AerialVideo.html.

One advantage of using aerial videos to generate decontextualized animations is that the tech-

nique provides sufficient training stimuli to enable the learning of representations of critical move-

ment patterns that signal potential interactivity between agents. We selected training videos in-

cluding interactivity from the database, so that the two agents always interact with each other in all

training stimuli. Thus, for any training video, yt = 1, ∀t = 1, · · · , T . During the training phase,

we excluded the examples used in human experiments. In total, there were 131 training instances.

In the implementation, we manually define the maximum number of sub-interaction categories

to be 15 in our full model (i.e., |S| = 15), which is over-complete for our training data according

to learning (low frequency in the tail of Fig. 6.5). With simulated annealing [KGV83], Gibbs

sampling converges within 20 sweeps (where a sweep is defined as all the latent sub-interaction

labels being updated once). The frequencies of the top 15 CIFs are highly unbalanced. In fact, the

top 10 CIFs account for 83.8% of the sub-interactions in the training data. The first row of Fig. 6.6

provides a visualization of the top 5 CIFs. Each of the top CIFs indicates some different behavioral

patterns in the aerial videos. For example, the No.1 CIF signals the approaching behavior that one

agent moves towards a reference agent. Interestingly, the converging point of the approaching is

not at the center of the location of the reference agent. Instead, the agent heads towards the future

location of the reference agent (above-the-center position in the flow figure), implying that the

fundamental characteristic of human interactions is being predictive.

6.6.2 Training with Heider-Simmel Videos

The second dataset was created from the original Heider-Simmel animation (i.e., two triangles and

one circle). We extracted the trajectories of the three shapes, and thus obtained 3 pairs of two-agent

interactions. We truncated the movie into short clips (about 10 seconds) to generate a total of 27
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videos. The same algorithm was used to train the model with 15 types of CIFs.

The most frequent five CIFs are visualized in the second row of Fig. 6.6. Clearly, the richer

behavior in the Heider-Simmel animation yielded a variety of CIFs with distinct patterns compared

to the CIFs learned from aerial videos. For example, the top CIF indicates that one agent moves

around the reference agent, a common movement pattern observed in Heider-Simmel animations.

The second CIF signals a ”run away” movement to avoid the reference agent. The frequencies of

CIFs are also more distributed in this dataset, as shown in Fig. 6.5.
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Figure 6.5: The frequencies of learned CIFs with the training data generated from aerial videos

(top) and the Heider-Simmel movie (bottom). The numbers on the x axis indicate the IDs of CIFs,

ranked according to the occurrence frequency in the training data.

6.6.3 Generalization: Training with Aerial Videos and Testing with Heider-Simmel Videos

We tested how well the model trained with the aerial videos (|S| = 15) can be generalized to a

different dataset, the Heider-Simmel animations. This generalization test aims to examine if the

critical movement patterns learned from real-life situations can account for perceived interactive-

ness in laboratory stimuli. Fig. 6.7 shows the model simulation results for a few Heider-Simmel

videos. We notice that the interactiveness ratings predicted by the model vary over time. Such

variability is consistent with subjective impressions that the Heider-Simmel animations elicit dif-

ferent degrees of animacy and interactivity at different time points. In addition, most clips in

Heider-Simmel animations are rated by the model as having a high probability of being interactive
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Figure 6.6: Interactive fields of the top five frequent CIFs learned from aerial videos (top) and

Heider-Simmel movie (bottom) respectively. In each field, the reference agent (red dot) is at the

center of a field i.e., (0,0), moving towards north; the arrows represent the mean relative motion

at different locations and the intensities of the arrows indicate the relative spatial density which

increases from light to dark. We observed a few critical CIFs that signal common interactions

from the two simulation results. For instance, in aerial videos, we observed i) approaching, e.g.,

CIF 1, and ii) walking in parallel, or following, e.g., the lower part of CIF 2. The Heider-Simmel

animation revealed additional patterns such as i) orbiting, e.g., CIF 1, and ii) leaving, e.g., CIF 4,

iii) walking-by, e.g., CIF 5.

(i.e., mostly above 0.5), consistent with human observers’ impression about the highly animate and

interactive behaviors conveyed in the animations. Also, the model was able to give continuous on-

line predictions based on the relative speeds and spatial locations of the two objects. For example,

when the two objects approach each other or follow each other, the model yields higher interactive

ratings.

The qualitative analysis of the model performance suggests that the model trained with aerial

videos shows a certain degree of generalization to the Heider-Simmel animations. However, un-

surprisingly, objects in aerial videos share different characteristics of motion patterns from the

motions involved in Heider-Simmel animations (as illustrated in the training results of CIFs in

Fig. 6.6). For example, orbiting behavior barely occurs in the aerial video dataset, and accordingly

the model yields relatively low interactiveness predictions when observing such behavior, which

is relatively common in the Heider-Simmel animations. In the next section, we will report human

experiments that can quantitatively assess how well the model can account for human performance.
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6.7 Experiment 1

6.7.1 Stimuli

24 interactive stimuli were generated from different pairs of human interactions in aerial videos.

We selected two people interacting with each other in each aerial video. We then generated the

decontextualized animations by depicting the two people as dots with different colors. The dots’

coordinates were first extracted from the aerial videos by human annotators. Note that the two dots

were first re-centered to localize the midpoint at the center of the screen in the first frame. The

coordinates were temporally smoothed by averaging across the adjacent 5 frames.

24 non-interactive stimuli were generated by interchanging motion trajectories of two people

selected from two irrelevant interactive videos (e.g., the motion of one dot in video 1 recombined

with the motion of a dot in video 2). The starting distances between two dots in non-interactive

stimuli were kept the same as in the corresponding interactive stimuli.

The duration of stimuli varied from 239 frames to 500 frames (mean frame = 404), correspond-

ing to 15.9 to 33.3 seconds, with a recording refresh rate of 15 frames per second. The diameters

of dots were 1◦ of visual angle. One dot was displayed in red (1.8 cd/m2) and the other in green

(30 cd/m2) on a black background (0 cd/m2). Among the 48 pairs of stimuli, four pairs of actions

(two interactive and two non-interactive) were used as practice.

6.7.2 Participants

33 participants (mean age = 20.4; 18 female) were enrolled from the subject pool at the Depart-

ment of Psychology, University of California, Los Angeles (UCLA). They were compensated with

course credit. All participants had normal or corrected-to-normal vision.

6.7.3 Procedures

Participants were seated 35 cm in front of a screen, which had a resolution of 1024×768 and a 60

Hz refresh rate. First, participants were given a cover story: “Imagine that you are working for a
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company to infer whether two people carry out a social interaction based on their body locations

measured by GPS signals. Based on the GPS signal, we generated two dots to indicate the location

of the two people being tracked.” The task was to determine when the two dots were interacting

with each other and when they were not. Participants were asked to make continuous responses

across the entire duration of the stimuli. They were to press and hold the left-arrow or right-arrow

button for interactive or non-interactive moments, respectively, and to press and hold the down-

arrow button if they were unsure. If no button was pressed for more than one second, participants

received a 500 Hz beep as a warning.

Participants were presented with four trials of practice at the beginning of the session to famil-

iarize them with the task. Next, 44 trials of test stimuli were presented. The order of trials was

randomized for each participant. No feedback was presented on any of the trials. The experiment

lasted for about 30 minutes in total.

6.7.4 Results

Interactive, unsure and non-interactive responses were coded as 1, 0.5, and 0, respectively. Frames

with no responses were removed from the comparison. Human responses are shown in Fig. 6.8.

A paired-sample t-test revealed that the average ratings of non-interactive actions (M = 0.34, SD

= 0.13) were significantly lower than interactive actions (M = 0.75, SD = 0.13), t(32) = 13.29,

p < 0.001. This finding indicates that human observers are able to discriminate interactivity based

on decontextualized animations generated from the real-life aerial videos.

To compare the model predictions with human continuous judgments, we computed the aver-

age human ratings, and ran the model to simulate online predictions of sub-interaction and inter-

action labels on the testing videos (excluding the ones in the validation set). Specifically, we used

Eq. (6.9) to compute the probability of two agents being interactive with each other at any time

point t. The model simulation used the hyper-parameters ρ = 10−11 and σ0 = 1.26.

Table 6.1 summarizes the Pearson correlation coefficient r and root-mean-square error (RMSE)

between the model predictions and the human ratings using aerial videos as training data. We

compared our hierarchical model with two baseline models: i) Hidden Markov Model (HMM),
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Table 6.1: The quantitative results of all methods in Experiment 1 using aerial videos as training

data.

Method HMM One-Interaction
Hierarchical Model

|S| = 5 |S| = 10 |S| = 15

r 0.739 0.855 0.882 0.911 0.921

RMSE 0.277 0.165 0.158 0.139 0.134

Figure 6.7: (Top) Examples of moving trajectories of selected objects in the Heider-Simmel ani-

mation dataset. One object is plotted in red and the other one is plotted in green. The intensity

of colors increases with time lapse, with darker color representing more recent coordinates. (Bot-

tom) Corresponding online predictions on the example Heider-Simmel videos by our full model

(|S| = 15) trained on aerial videos over time (in seconds).
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Figure 6.8: Mean ratings of the interactive versus non-interactive actions in the experiment 1. Error

bars indicate +/- 1 SEM.

Figure 6.9: Comparison of online predictions by our full model trained on aerial videos (|S| = 15)

(orange) and humans (blue) over time (in seconds) on testing aerial videos. The shaded areas show

the standard deviations of human responses at each moment.
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where the latent variables st and yt only depend on their preceding variables st−1 and yt−1; ii) a

model with only one type of sub-interaction. Both models yielded poorer fits to human judgments

(i.e., lower correlation and higher RMSE) than the hierarchical model. In addition, we changed the

number of sub-interaction categories to examine how sensitive our model is to this parameter. The

results clearly show that i) only using one type of sub-interaction provides reasonably good results,

r = .855, and ii) by increasing the number of sub-interactions |S|, the fits to human ratings were

further improved until reaching a plateau with a sufficiently large number of sub-interactions.

Fig. 6.9 shows results for a few videos, with both model predictions and human ratings. The

model predictions accounted for human ratings quite well in most cases. However, the model

predictions were slightly higher than the average human ratings, which may be due to the lack

of negative examples in the training phase. We also observed high standard deviations in human

responses, indicating large variability of the online prediction task for every single frame in a dy-

namic animation. In general, the difference between our model’s predictions and human responses

are seldom larger than one standard deviation relative to human responses.

We also used the model trained from the Heider-Simmel animation and tested it on the stimuli

generated from the aerial videos. This procedure yielded a correlation of 0.640 and RMSE of

0.227. The reduced fit for this simulation indicates the discrepancy between moving patterns of the

two types of training datasets. The CIFs learned from one dataset may be limited in generalization

to the other dataset.

6.8 Experiment 2

One advantage of developing a generative model is that it enables the synthesis of new videos

by Eq. (6.10) and Eq. (6.11), based on randomly sampled initial positions of the two agents (x0
1,

x0
2) and the first sub-interaction s1. By setting the interaction labels to be 1 or 0, the synthesized

stimuli can be controlled to vary the degree of interactiveness. In Experiment 2, we aimed to use

the model to synthesize new animations and see if interactiveness can be accurately perceived by

human observers.

We used the model trained on aerial videos to synthesize 10 interactive and 10 non-interactive
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animation clips. 17 participants were enrolled from the subject pool at UCLA. The procedure of

Experiment 2 was similar to that of Experiment 1. The 20 synthesized videos were presented to

human observers in random orders. The task was to press one of the two buttons at the end of the

action to judge if the two dots were interacting or not.

The interactiveness between the two agents in the synthesized videos was judged accurately

by human observers, with the average ratings of the synthesized non-interactive actions (M =

0.15, SD = 0.15) significantly lower than the synthesized interactive actions (M = 0.85, SD =

0.20), t(16) = 14.00, p < 0.001. The model prediction of a whole video is set to be the average

predictions of Eq. (6.9). The correlation between model predictions and average human responses

was high, 0.94. The results suggested that humans reliably perceived interactiveness from the

synthesized stimuli, and were sensitive to model-controlled degree of interactivity.

6.9 Discussion

In this paper, we examined human perception of social interactions using decontextualized anima-

tions based on movement trajectories recorded in aerial videos of a real-life environment, as well

as Heider-Simmel-type animations. The proposed hierarchical model built on two key compo-

nents: conditional interactive fields of sub-interactions, and temporal parsing of interactivity. The

model fits human judgments of interactiveness well, and suggests potential mechanisms underly-

ing our understanding of meaningful human interactions. Human interactions can be decomposed

into sub-interactions such as approaching, walking in parallel, or standing still in close proximity.

Based on the transition probabilities and the duration of sub-components, humans are able to make

inferences about how likely the two people are interacting.

Our study indicates that rapid judgments on human interactivity can be elicited by the detection

of critical visual features such as CIFs, without the involvement of a high-level reasoning system.

The fairly fast, automatic, irresistible and highly stimulus-driven impressions about animacy and

interactivity are largely perceptual in nature. This result is consistent with the literature on causal

perception [ST00, PTL17, Joh73, BL11, BL12, TL13, TL14, SBL16]. Hence the detection of

interactivity between agents is likely to be processed as in the proposed model without the explicit
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modeling of intention and goals. This process is efficient, but not sufficient to address questions

such as why and how the interactions are carried out between the agents. When these questions

are important for a particular task in the social context, the reasoning system and the theory-of-

mind system will be called upon after the perception of interactivity has been signaled. Future

work should focus on the interplay between the two general systems involved in perception and in

inference of human interactions.

The model provides a general framework and can be extended to include hidden intentions

and goals. By modifying the potential function in the model, the computational framework can be

applied to more sophisticated recognition and understanding of social behavioral patterns. While

previous work has focused on actions of individuals based on detecting local spatial-temporal

features embedded in videos [DRC05], the current work can deal with multi-agent interactions.

Understanding the relation between agents could facilitate the recognition of individual behaviors

by putting single actions into meaningful social contexts. The present model could be further

improved to enhance its flexibility and broaden its applications. The parametric linear design of

CIFs provides computational efficiency, and temporally parsing an interaction into multiple sub-

interactions enhances the linearity in each sub-interaction. However, this design may not be as

flexible as non-parametric or non-linear models, such as a Gaussian process. In addition, the cur-

rent model is only based on visual motion cues. The model could be enhanced by incorporating a

cognitive mechanism (e.g., a theory-of-mind framework) to enable explicit inference of intentions.
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CHAPTER 7

A Unified Computational Framework for Modeling Physical

and Social Events

7.1 Introduction

Imagine you are playing a multi-player video game with open or free-roaming worlds. You will en-

counter many physical events, such as blocks collapsing onto the ground, as well as social events,

such as avatars constructing buildings or fighting each other. All these physical and social events

are depicted by movements of simple geometric shapes, which suffice to generate a vivid percep-

tion of rich behavioral, including interactions between physical entities, interpersonal activities

between avatars engaged in social interactions, or actions involving both humans and objects.

This type of rich perception elicited by movements within simple visual displays has been

extensively studied in psychology. Prior work (e.g., [HS44, Mic63, Kas81, PG89, ST00, GNS09,

GMS10]) have provided convincing evidence that humans possess a remarkable ability to perceive

and reconstruct both physical events and social events from simple very limited visual inputs in an

efficient and robust way.

Although many studies of both intuitive physics and social perception examined dynamic stim-

uli consisting of moving shapes, these research areas have largely been isolated from one another,

with different theoretical approaches and experimental paradigms. In the case of physical events,

research has been focused on the perception and interpretation of physical objects and their dy-

namics, aiming to determine whether humans use heuristics or mental simulation to reason about

intuitive physics (see a recent review by [KHL17]). For social perception, some research has aimed

to identify critical cues based on motion trajectories that determine the perception of animacy and
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social interactions [DL94, ST00, GNS09, SPF17, SPF18]. Chapter 6 falls into this category. There

has also been work focusing on inferences about agents’ intentions [BST09, UBM10, PBC14].

In contrast to the clear separation between the two research topics, human perception integrates

the perception of physical and social events. Hence, it is important to develop a common com-

putational framework applicable to both intuitive physics and social perception to advance our

understandings on how humans perceive and reason about physical and social events.

In this chapter, we propose a unified computational framework for modeling both physical

events and social events based on movements of simple shapes. In particular, we unify the physical

and social modeling in three ways.

First, we design a unified physical and social simulation for generating Heider-Simmel anima-

tions in which simple moving shapes vary in degrees of physical violation and the involvement

of intention. Prior work usually created Heider-Simmel-type stimuli using manually designed

interactions [GNS09, GMS10, IKB17], rule-based behavior simulation [KC10, PBC14], and tra-

jectories extracted from human activities in aerial videos [SPF18]. It is challenging to manually

create many motion trajectories, and to generate situations that violate physical constraints. Ac-

cordingly, we develop a joint physical-social simulation-based approach built upon a 2D physics

engine (Figure 7.1). A similar idea has been previously instantiated in a 1D environment, Lineland

[Ull15]. By generating Heider-Simmel-type animations in a 2D environment with the help of deep

reinforcement learning, our simulation approach is able to depict a richer set of motion patterns in

animations. This advanced simulation provides well-controlled Heider-Simmel stimuli enabling

the measurement of human perception of physical and social events for hundreds of different mo-

tion patterns.

Second, we propose a unified physical and social concept learning paradigm by formulating the

concept learning process as the pursuit of generalized coordinates and the corresponding parsimo-

nious potential energy functions. This is inspired by Lagrangian mechanics, where the dynamics

of a complex system can be fully captured by a few simple scalar functions, i.e., potential energy

functions based on generalized coordinates that are intuitive to humans. We show that from a

handful of examples of simple shapes’ movements generated by our joint physical-social simu-

lation engine, this learning paradigm can discover interpretable physical and social concepts (as
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generalized coordinates) and model physical laws as well as social behaviors (by potential en-

ergy functions). Based on the learned physical laws and social behaviors, we also develop general

metrics of the physical violation and the likelihood of pursuing certain goals for entities in the

generated animations given their motion trajectories.

Third, we aim to construct a unified psychological space that may reveal the partition between

the perception of physical events involving inanimate objects and the perception of social events

involving human interactions with other agents. Specifically, we hypothesize that this unified space

includes two prominent dimensions: an intuitive sense regarding whether physical laws are obeyed

or violated; and an impression of whether an agent possesses intentions in the display. In this

work, these two indices are computed based on the metrics proposed in our computational model

to measure how well the motion patterns in an animation satisfy physics, and the likelihood that

entities are human agents showing intentions. Note that the intuitive sense of physical violation

may result from observable physical forces that can not be explained by perceived entity properties

(such as motion, size, etc.) in a scene. The development of this unified space may shed light on

many fundamental problems in both intuitive physics and social perception.

To construct such space, we project a video rendered by our simulation engine as a whole

onto the space. Hence, a large range of videos can provide a distribution of observed events. We

can also project individual entities in one physical or social event onto the same space, and then

examine pairwise relations between the projected locations of entities in the space, which could

serve as an informative cue for judging social/physical roles of entities (e.g, as an human agent or

an inanimate object). In two experiments, we combined model simulations with human responses

to validate the proposed psychological space.

7.2 Stimulus Synthesis in Flatland

7.2.1 Overview

Can we have a unified view of physical events with inanimate objects and social events with human

agents? Can we create a continuous transition from objects to agents, and from agents back to

106



(a) Synthesizing Physical Entity
Initial

Condition Physics Engine Render 
the whole video

Initial
Condition Physics Engine Render one step (50 ms)

by applying the forces

GREEN Agent’s Policy 

RED Agent’s Policy 

Ft
2

Ft
1Ft

2

Ft
1

(b) Synthesizing Agent Entity

Figure 7.1: Overview of our joint physical-social simulation engine. For a dot instantiating a

physical object, we randomly assign its initial position and velocity and then use physics engine

to simulate its movements. For a dot instantiating a human agent, we use policies learned by deep

reinforcement learning to guide the forces provided to the physics engine.

objects? In other words, can we bridge physics and social behaviors? We believe that the first

step towards addressing these questions should be building a simulation engine that can generate

both physical interactions and social interactions in a principled manner, so that the two types

of interactions can emerge in the same world. Therefore, we propose a joint physical and social

simulation engine, Flatland1, where entities are moving in a 2D environment w.r.t. the motion

rendered by a physics engine.

Figure 7.1 gives an overview of our joint physical-social simulation engine. Each video in-

cluded two dots (red and green) and a box with a small gap indicating a room with a door. The

movements of the two dots were rendered by a 2D physics engine (pybox2d2). If a dot represents

an object, we randomly assigned the initial position and velocity, and then used the physics engine

to synthesize its motion. Note that our simulation incorporated the environmental constraints (e.g.,

a dot can bounce off the wall, the edge of the box), but did not include friction. If a dot repre-

sents an agent, it was assigned with a clearly-defined goal (e.g., leaving room) and pursued its goal

1Inspired by the classic mathematical fiction, Flatland: A Romance of Many Dimensions by Edwin A. Abbott.

2https://github.com/pybox2d/pybox2d
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by exerting self-propelled forces (e.g., pushing itself towards the door). The self-propelled forces

were sampled from agent policy learned by deep reinforcement learning (see more details in a later

subsection). Specifically, at each step (every 50 ms), the agent observed the current state rendered

by the physics engine, and its policy determined the best force to advance the agent’s pursuit of

its goal. We then programmed the physics engine to apply this force to the dot, and rendered its

motion for another step. This process was repeated until the entire video was generated.

7.2.2 Interaction Types

As summarized in Figure 7.2, we consider three types of interactions, including human-human

(HH), human-object (HO) and object-object (OO) interactions, all of which are generated by the

approach depicted in Figure 7.1. Note that in this work we treat the terms “human” and “agent”

interchangeably. When synthesizing the agents’ motion, we set two types of goals for the agents,

i.e., ”leave the room” (g1) and ”block the other entity” (g2). Specially, in HH stimuli, one agent has

a goal of leaving the room (g1), and the other agent aims to block it (g2); in HO stimuli, an agent

always attempts to keep a moving object within the room (g2) and the object has an initial velocity

towards the door. By randomly assigning initial position and velocity to an agent, we can simulate

rich behaviors that can give the impression such as blocking, chasing, attacking, pushing, etc.

In addition to the three general types of interactions, we have also created sub-categories of

interactions to capture a variety of physical and social events. For OO animations, we included

four events, as collision, connections with rod, spring and soft rope. Since these connections were

invisible in the displays, the hidden physical relations may result in a subjective impression of

animacy or social interactions between the entities. In addition, the invisible connections between

objects (rod, spring, and soft rope) introduce different degrees of violation of physics in the motion

of the corresponding entities if assuming the two entities are independent. For HH animations,

we varied the “animacy degree” (AD) of the agents by controlling how often they exerted self-

propelled forces in the animation. In general, a higher degree of animacy associates with more

frequent observations about violation of physics, thus revealing self-controlled behaviors guided

by the intention of an agent. The animacy manipulation introduced five sub-categories of HH
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Figure 7.2: An illustration of three types of synthesized interactions for physical and social events.

A few examples are included by showing trajectories of the two entities. The dot intensities change

from low to high to denote elapsed time. Note that the connections in OO stimuli (i.e., rod, spring,

and soft rope) are drawn only for illustration purpose. Such connections were invisible in the

stimuli. Examples of stimuli are available at: https://tshu.io/HeiderSimmel/CogSci19.
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Figure 7.3: The deep RL network architecture for learning policy for goal-directed movements of

an agent. For each goal, we train a separate network with the same architecture.

stimuli with five degrees of animacy – 7%, 10%, 20%, 50%, and 100%, respectively corresponding

to applying force once for every 750, 500, 250, 100, and 50 ms. In an HH animation, we assigned

the same level of animacy degree to both dots.

7.2.3 Training Policies

As shown in Figure 7.1, in order to generate social events, we need sensible policies to infer

the self-propelled forces for pursuing goals. However, searching for such policies in a physics

engine is extremely difficult. In this study, we use deep reinforcement learning (RL) to acquire

such policies, which has been shown to be a powerful tool for learning complex policies in re-

cent studies [SSS17]. Formally, an agent’s behavior is defined by an Markov decision process

(MDP), 〈S,A, T , R,G, γ〉, where S and A denote the state space (raw pixels as in Figure 7.3)

and action space, T : S × A 7→ S are the transition probabilities of the environment (in our

case, deterministic transitions defined by physics), R is the reward function associated with the

intended goals g ∈ G, and 0 < γ ≤ 1 is a discount factor. To match to the experimental setup,

we define two reward functions for the two goals: i) for “leaving the room”, the agent receives a

reward, rt = R(st, g1) = 1(out of the room), at step t; ii) for “blocking”, the reward at step t is

rt = R(st, g2) = −1(opponent is out of the room). To simplify the policy learning, we define a

discrete action space, which corresponds to applying forces with the same magnitude in one of the

eight directions and “stop” (the agent’s speed decreases to zero after applying necessary force).

The objective of the deep RL model is to train the policy network shown in Figure 7.3 to
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maximize the expected return E[
∑∞

t=0 γ
trt] for each agent. The optimization was implemented

using advantage actor critic (A2C) [MBM16] to jointly learn a policy (actor) π : S × G 7→ A
which maps an agent’s state and goal to its action, and a value function (critic) V : S 7→ R. The

two functions were trained as follows (assuming that entity i is an agent):

∇θπJ(θπ) = ∇θπ log π(ati|sti, gi; θπ)A(sti, gi), (7.1)

∇θV J(θV ) = ∇θV

1

2

(
∞∑
τ=0

γτrt+τi − V (sti, gi; θV )

)2

, (7.2)

where A(sti, gi) =
∑∞

τ=0 γ
τrt+τi − V (sti, gi) is an estimate of the advantage of current policy over

the baseline V (sti, gi). We set γ = 0.95 and limit the maximum number of steps in an episode

to be 30 (i.e., 1.5 s). Note that we train a network for each goal with the same architecture. In

HH animations, an agent’s policy depends on its opponent’s policy. To achieve a joint policy

optimization for both agents, we adopt an alternating training procedure: at each iteration, we train

the policy of one of the agents by fixing its opponent’s policy. In practice, we trained the polices

by 3 iterations.

7.3 Unified Physical and Social Concept Learning

7.3.1 Inspiration from Lagrangian Mechanics

Why do we want to construct potential energy functions to model physical and social systems

and learn the underlying physical and social concepts? To answer this, let us first look at the

comparison between Lagrangian mechanics (based on potential energy) and Newtonian mechanics

(direct force analysis).

Consider a system of N particles with the same mass (i.e., mi = m, ∀i = 1, · · · , N ) where

their positions are (x1(t),x2(t), · · · ,xN(t)) in Cartesian coordinates at time t. The surrounding

environment (context) is denoted as c. The Lagrangian of this system is defined as

L = L(x1, · · · ,xN , ẋ1, · · · , ẋN , t) = T − U, (7.3)

where T = T (ẋ1, · · · , ẋN , t) =
∑N

i=1
1
2
mẋi(t)

2 is the kinetic energy of all entities and U is the

potential energy. When there are only conservative forces in the system, the potential energy solely
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depends on the coordinates of the entities, i.e., U = U(x1, · · · ,xN , t). For convenience, we may

drop the notation t sometimes.

From the Euler-Lagrange equation, we may derive the motion of equations for each entity:

d

dt

∂L

∂ẋi
− ∂L

∂ẋi
= 0, ∀i = 1, · · · , N. (7.4)

By plugging in T and U , this in fact gives us Newton’s second law:

mẍi = Fi = −∂U(x1, · · · ,xN)

∂xi
. (7.5)

This implies that as an alternative approach to conducting explicit force analysis which is often

extremely difficult in complex systems, we can instead derive forces from a few scalar functions,

i.e., potential energy functions. This advantage becomes more significant when we adopt suitable

generalized coordinates which constitutes potential energy functions in simple forms.

7.3.2 Parsimonious Models from Generalized Coordinates

Formally, we may convert the Cartesian coordinates of the N entities into a generalized coordinate

system q = (qj)
D
j=1, where D is usually the number of degrees of freedom in the system. Each

dimension is derived from a transformation function qj = φj(x1, · · · ,xN , c), where c is the context

(e.g., surrounding environment) of the current system. These coordinates’ first-order derivatives

q̇ = (q̇j)
D
j=1 become generalized velocities accordingly. Here, φj could be understood as a type of

state representation extracted from the raw observations. Based on the generalized coordinates, we

can redefine the Lagrangian:

L = L(q, q̇) = T − U, (7.6)

where T = T (q, q̇) = T (ẋ1, · · · , ẋN) is the kinetic energy, and V is the potential energy. Again,

if we only consider conservative forces, we will have U = U(q). The Euler-Lagrange equation

still holds for the generalized coordinates:

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0, ∀j = 1, · · · , D. (7.7)

The resulting equations of motion describe the dynamics of the system as a whole in terms of how

generalized coordinates (i.e., the physical quantities of interest) change over time. We can map the
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Figure 7.4: Systems with circles and springs. (a) Two entities (circles) connected by a massless

spring. The Cartesian coordinates of the two entities are x1 and x2. The potential energy of this

system can be defined by using just one variable, i.e., the distance between the two entities. (b)

Three entities connected by two massless springs.

motion back to individual entity’s Cartesian coordinates based on the transformation functions φj:

mẍi = Fi = −
D∑
j=1

∂U(q)

∂qj

∂φj
∂xi

∀i = 1, · · · , N. (7.8)

The use of generalized coordinates allows us to greatly simplify the derivation of forces (or

dynamics) for entities in a system, which ultimately results in a parsimonious model to describe

the dynamics of a system. Therefore, by constructing the most suitable generalized coordinates,

the key characteristics of a system may naturally emerge from raw observations. Consider the

spring system shown in Figure 7.4a as an example. Assume the equilibrium length of the spring

is l and its constant is k, then potential energy of this system can be conveniently defined by only

one variable – the distance between the two entities (or equivalently the length of the spring). Let

q = φ(x1,x2) = ||x1 − x2||, the potential is U(q) = 1
2
k(q − l)2, which is a simple quadratic

function of q. Based on Eqn. 7.8, we can derive the forces applied to the two entities accordingly:

F1 = −k(q − l)(x1 − x2)/q, F2 = −k(q − l)(x2 − x1)/q.

7.3.3 Modular Models and Triggering Conditions

Multiple independent potential energy functions may coexist in a complex system, and the overall

potential energy is simply the sum of all individual potential energy functions. This naturally leads

to a modular design, where the potential energy of any system is a combination of atomic potential
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Figure 7.5: A circle bouncing off a wall. The generalized coordinate in this case can be derived as

the expected violation after a short period of time ∆t based on the entity’s current position xt and

velocity ẋt.

energy functions as bases. For instance, in Figure 7.4b, by defining generalized coordinates q1 =

||x1−x2|| and q2 = ||x1−x3||, the overall potential energy can be decomposed into two functions

associated with the two springs: U(q) = U1(q1) + U2(q2). If the two springs have the same

property, then the potential energy can be further simplified by reusing the same atomic function:

U(q) = U(q1) + U(q2).

To enforce sparsity, we assume a polynomial form for each potential function. Specifically, we

consider a potential function such as Uj(qj) = w>j [q−1
j , 1, qj, q

2
j ], where wj are parameters of the

polynomial function.

When we have multiple atomic potential energy functions in a system, it is often important to

identify when each function will be present or effective in terms of yielding forces to the entities.

Some potential energy functions like the ones in Figure 7.4 are always effective. But there are

also functions with limited effective spatial ranges. For instance, to approximate the force an

entity receives when bouncing off a wall (here we assume perfectly elastic collision) as shown

in Figure 7.5, we can imagine that when the entity is expected to violate the non-overlapping

constraint (the distance between the entity and the wall can not be smaller than a threshold) in a

very short period of time (∆t) based on its current position and velocity, there will be an effective

potential energy function applied to the entity. In fact, this potential can be approximated by a

spring (with a very large constant k � 1 and a equilibrium length of distance threshold) connecting

the contact point and the entity. This type of approximation has been previously introduced in

robotics literature as well [EB15].
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Figure 7.6: Illustration of social concepts as generalized coordinates. (a) An example of general-

ized coordinates in social systems. The (q1, q2, q3) here are potentially the most critical variables in

describing this social system. q1 and q3 here reveal the potential goal (i.e., the door) for both agents,

so an attraction potential term could explain the behavior of “leaving the room”. q2 can represent

the relation between the agents. E.g., the “chasing” behavior could be modeled by a potential term

that only depends on q2. (b) The generalization of (a) where the generalized coordinates and the

potential energy function can be preserved; we only need to modify the transformation from raw

observations to the generalized coordinates.

If we denote δj(qj) to be the triggering condition function, then we may define the complete

potential energy as

U(q) =
D∑
j=1

δj(qj)Uj(qj). (7.9)

7.3.4 Goal-oriented Potentials for Social Behaviors

In our joint simulation engine, everything is generated in a physics engine. It is natural to derive

the generalized coordinates and the corresponding potentials regardless of whether an entity is an

object or an agent. Consequently, similar ideas discussed for modeling physical systems may also

be applied to modeling the goals and relations in social behaviors as illustrated in Figure 7.6a.

Suppose an agent with free will can exert self-propelled forces to purse its goal. Then its plan or

policy w.r.t. a certain goal can be represented as the force exerted by itself given its current state

and the context. By assuming rationality of the agent’s plan, the force should be explained by

certain potential function associated with its goal and its relations with the environment and other
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agents, which can be seen as a form of social potential energy defined on semantically meaningful

measurements (i.e., generalized coordinates) such as the distance between its current position and

its goal position, or the relative spatial displacement between itself and other agents. By seeking

the simplest generalized coordinates and the corresponding sparse functions of potential energy,

important concepts in social behaviors, such as goals and relations could naturally emerge as well.

With this analogy, the Cartesian coordinates (xi)
N
i=1 coupled with the context c are the states of

the agents, and the generalized coordinates qj are equivalent to the sufficient statistics in describ-

ing the observed social scenario. Let the agents’ goals be gi ∈ G, where G is a set of all possible

goals, then an agent’s behavior is guided by a potential energy function defined in Cartesian coor-

dinates, i.e., Ui(x1, · · · ,xN , G, c). We then use a potential energy function defined in generalized

coordinates to equivalently represent the goal directed potential for agent i as follows

Ui(q, gi) = Ui(x1, · · · ,xN , G, c). (7.10)

Let X = {xi}Ni=1. The plan of agent i can be derived in a step-by-step manner by Eq. 7.8, i.e.,

Fi(xi|X−i, gi) = −
D∑
j=1

∂U(q, gi)

∂qj

∂φj
∂xi

, ∀i = 1, · · · , N. (7.11)

For instance, in Figure 7.6a, if the red agent tries to leave the room, then its motion will be

driven by potential U(q1). Similarly, if the green agent aims to catch the red agent, then it is driven

by a potential U(q2).

Thus, learning sparse potential energy functions through generalized coordinates takes a straight-

forward approach in explaining the rational behaviors demonstrated by the agents since it allows

us to derive the optimal policy directly from the inferred potential energy in addition to discov-

ering the goals. This method may also help us discover sub-goals (i.e., different potential energy

terms) in the optimal plans. Finally, the explicit modeling of generalized coordinates can poten-

tially improve the generalization of the learned optimal plans as well since we can simply remap

any new environment to the same coordinate system by only changing φj(·); the previously learned

potential energy functions and the corresponding optimal plans can be preserved. For instance, the

generalized coordinates and potential energy functions constructed based on the environment in
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Figure 7.6a can be transferred to the new scenario in Figure 7.6b where the new position of the

door will only affect the coordinate transformation for q1 and q3.

In summary, we aim to learn the following concepts by constructing generalized coordinates

and the corresponding potential energy terms:

• Discovery of meaningful goals and relations through the generalized coordinates;

• Deriving optimal plans directly through the learned potential energy (with recursive reason-

ing when involving the anticipation of other agents’ moves).

7.3.5 Summary of Main Advantages

We summarize the main advantages of constructing generalized coordinates and the corresponding

potential energy functions as follows:

• Generalized coordinates as effective representations of a system. The change in q are

the effective change of a system, i.e., ∂U(q)/∂q. By pursing the coordinates that results in

the simplest U(q), we are essentially pursuing a sparse model for the system. For physical

systems, such representations will reveal physical concepts, whereas in social systems, they

may denote important concepts of goals and social relations.

• “Compression” of optimal planning. Optimal planning is complex and time consuming.

However, given demonstrations (observed trajectories of agents), we may compress these

optimal plans into a few potential energy functions. Consequently, instead of searching for

an optimal plan from scratch every time, we may derive forces from the potential energy

functions and roll out the whole plan step-by-step starting from the initial state. We may

deploy this plan directly, or use it as a starting point and further refine it to compensate the

errors in the learned potential energy functions. Similarly, we can also take advantage of the

derived forces to conduct inverse planning for Bayesian goal inference.

• Knowledge transfer. When the surrounding environment changes, the potential energy

defined on generalized coordinates, U(q), may be preserved. In order to derive forces for
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Type I: 
Distance

Type II: 
Non-overlapping violation

Figure 7.7: Two types of candidates of generalized coordinates shown as the purple and orange

dashed lines respectively. The blue circles highlight the reference points used for extracting the

first type of candidate coordinates.

the entities in the new environment, we only need to change the coordinate transformations,

i.e., qj = φj(x1, · · · ,xN , c).

7.3.6 A Sketch of the Learning Algorithm

Problem setup. In an N -entity system, we may observe the context (environment) c, and the

trajectories of all entities Γi = {(xti, ẋti)}Tt=1, where the length of each step is ∆t, and the total

length is T∆t. We assume that all entities have the same mass m and there are only conservative

forces in the system. From the trajectories, we may also compute the ground-truth force each agent

i receives at time step t, i.e., Ft
i. The goal is to learn a model (generalized coordinates and potential

energy functions) which can predict the forces given the observations.

Proposals of generalized coordinates. From bottom-up proposals, we obtain a pool of can-

didates for generalized coordinates, Q = {qj}Dj=1. Note that many of them may be redundant and

will not be selected by the final model. In particular, these candidates can arise from two types of

proposals:

i) Distance between two geometric shapes. As shown in Figure 7.7, this can be the distance
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between two entities (e.g., the one in Figure 7.4) or the distance between an entity and a part

of the context (e.g., the one in Figure 7.5). The corresponding potential energy functions are

always triggered, i.e., δj(qj) = 1.

ii) Expected constraint violation as illustrated in Figure 7.5. When there is violation, qj repre-

sents the expected overlapped length; otherwise qj = 0. The triggering condition is conse-

quently defined as δj(qj) = 1(qj > 0).

Note that for social behaviors, we do not consider the second type of the generalized coordi-

nates.

Pursuing a set of atomic potential energy functions. The final potential energy function

consists of a set of atomic potential energy functions, each of which is defined as Uk(qk), k ∈
S ⊂ Q, where S is a set of generalized coordinates selected from the candidate pool Q. The final

potential energy will be used for predicting the forces for each entity:

F̂t
i = −

∑
k∈S

δk(q
t
k)
∂Uk(q

t
k)

∂qtk

∂φtk
∂xti

. (7.12)

Finally, we define an MSE loss for the force prediction as the learning objective function:

L(S,Ω = (wk)
K
k=1) = E

[
1

2
||Ft

i − F̂t
i||22
]
. (7.13)

The pursuit of the final model is essentially the search of the optimal generalized coordinates

S and the parameters Ω of the corresponding potential energy functions that minimize the above

loss (along with some regularization for sparsity). For computational efficiency, we adopt a greedy

pursuit, where we start from an empty set of generalized coordinates, then at each iteration, we

augment the final model with the candidate generalized coordinate that has not yet been selected

in previous iterations and yields a fitted potential energy function with the largest loss reduction.

The iterative pursuit is repeated until there is no significant loss reduction anymore.

7.3.7 Learning Results

We generated collision and spring (with several different spring lengths) physical systems shown

in Figure 7.2, each had 50 videos as training examples. Figure 7.8 shows the learning process of
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Figure 7.8: Learning process of two physical systems. The purple and orange lines are the selected

generalized coordinates from the first and the second type of candidates respectively; each number

indicates the iteration when the corresponding generalized coordinate was selected.
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Figure 7.9: Learning results of two goals. Left: selected generalized coordinates; right: force fields

derived from the learned potential energy functions, where the blue circle represents the position

of the other agent, and the red cross shows the location with the lowest potential energy in the

current field.

two systems.

We also used the same approach to pursue potential energy functions for two goals depicted in
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Figure 7.2 for HH videos. In practice, we used 45 videos of an agent fleeing the room successfully

to learn the potential energy functions for the goal of “leaving the room”, and used another 45

videos of an agent successfully blocking another agent or attempting to block it without success

for the goal of “blocking”. Figure 7.9 shows generalized coordinates and the derived forces fields

based on the learned model for both goals. We find that using Lasso can help discover more

meaningful goal-directed potentials for social behaviors by enforcing sparsity for the potential

energy function of each generalized coordinate.

7.3.8 Physics Inference

By giving the positions and velocities of the two entities at time t, i.e., xti, ẋ
t
i, i = 1, 2, we can

predict the physical forces each entity receives at t and consequently their future velocities at t+1,

ˆ̇xt+1
i , i = 1, 2. By comparing with the ground truth ẋt+1

i , we can evaluate to what degree an entity’s

motion is inconsistent with physics predictions:

Di =
1

T

T∑
t=1

||ẋti − ˆ̇xti||22, ∀i = 1, 2. (7.14)

In practice, there are multiple physical systems, each of which will give different predictions.

Since we do not know which system an observation belongs to, we can enumerate all learned

physical systems and select the one that yields the lowest prediction error, which we may use as

the physical violation measurement.

7.3.9 Intention Inference

The force fields illustrated in Figure 7.9 give us the expected moving direction at each location

given the goal of the agent and the position of the other agent. Inspired by the classic FRAME

model [ZWM98, XHZ15] which was originally used for modeling texture and natural images, we

may treat a field derived from our learned model as filters of motion for a given goal at different

locations. The basic idea is illustrated in Figure 7.10. Specifically, the filter response at location xi
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Figure 7.10: Illustration of the idea of motion filters. Suppose the blue arrow is the observed

velocity of an agent at a given moment, then we may use the angle θ between to measure the

fitness of the observed motion and the expected goal-directed motion (i.e., using cos(θ) as the

filter response). We divide the space into four regions to compute the likelihood of an agent is

pursuing a specific goal.

for agent i with goal gi and the other agent being at xj can be defined as

h(ẋi|xi,xj, gi) = cos(θ) =
F̂i(xi|xj, gi)

>
ẋi

||F̂i(xi|xj, gi)|| · ||ẋi||
, (7.15)

where θ is the angle between the observed moving direction ẋi and the expected moving direction

from the predicted force F̂i in Eq. 7.11. By dividing the whole space into R discrete regions (R = 4

in this work), where each region has a location set Xr, we can define the likelihood of observing

an agent with a goal having a certain trajectory Γi as

p(Γi|gi,Γj) =
1

Z(Λ)
exp

{
1

T

T∑
t=1

R∑
r=1

1(xti ∈ Xr)λrh(ẋti|xti,xtj, gi)
}
q(Γ), (7.16)

where q(Γi) =
∏T

t=1 q(ẋ
t
i) is a background model for all moving directions without pursuing a

specific goal (we assume a uniform distribution for q(ẋti)), Λ = (λ1, · · · , λR) is the parameter for

the likelihood corresponding to the R regions, and Z(Λ) is the normalization term. We may write
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Z(Λ) as

Z(Λ) = Eq(Γ)

[
exp

{
1

T

T∑
t=1

R∑
r=1

1(xti ∈ Xr)λrh(ẋti|xti,xtj, gi)
}]

. (7.17)

Since we assume a uniform distribution for the background velocity, it is easy to show that

Z(Λ) = 1. Then parameter λr in the likelihood can be estimated as the every filter responses

of trajectories in training examples in region r. Finally, we define the intention measurement as

the log-likelihood ratio of a trajectory following the optimal plan for pursuing any goal over the

background trajectory model:

Li = max
g∈G

log p(Γi|g,Γj)− log q(Γi), ∀i = 1, 2. (7.18)

7.4 Experiment 1

7.4.1 Participants

30 participants (mean age = 20.9; 19 female) were recruited from UCLA Psychology Department

Subject Pool. All participants had normal or corrected-to-normal vision. Participants provided

written consent via a preliminary online survey in accordance with the UCLA Institutional Review

Board and were compensated with course credit.

7.4.2 Stimuli and Procedure

850 videos of Heider-Simmel animations were generated from our synthesis algorithm described

above, with 500 HH videos (100 videos for each AD level), 150 HO videos, and 200 OO videos

(50 videos for each sub-category). Videos lasted from 1 s to 1.5 s with a frame rate of 20 fps. By

setting appropriate initial velocities, the average speeds of dots in OO videos were controlled to

be the same as the average speeds of dots in HH with 100% ADs (44 pixel/s). The dataset was

split into two equal sets; each contained 250 HH, 75 HO, and 100 OO videos. 15 participants were

presented with set 1 and the other 15 participants were presented with set 2.

Stimuli were presented on a 1024 × 768 monitor with a 60 Hz refresh rate. Participants were

given the following instructions: “In the current experiment, imagine that you are working for a
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Figure 7.11: Human response proportions of interaction categories (a) and of the sub-categories

(b,c) in Experiment 1. Error bars indicate the standard deviations across stimuli.

security company. Videos were recorded by bird’s-eye view surveillance cameras. In each video,

you will see two dots moving around, one in red and one in green. Your task is to ‘identify’ these

two dots based on their movement. There are three possible scenarios: human-human, human-

object, or object-object.” Videos were presented in random orders. After the display of each video,

participants were asked to classify the video into one of the three categories.

7.4.3 Results

Human response proportions are summarized in Figure 7.11. Response proportion of human-

human interaction swas ignificantly greater than the chance level 0.33 (t(499) = 25.713, p < .001).

For HO animations, response proportion of human-object interaction was significantly greater than

the other two responses (p < .001). Similarly, response proportion of object-object was greater

than the other two responses (p < .001) for OO animations. These results reveal that human par-

ticipants identified the main characteristics of different interaction types based on dot movements.

Next, we examined human responses to the sub-categories within the HH and OO animations.

We first used the animacy degree as a continuous variable and tested its effect on human responses

in the HH animations. With increases in degree of animacy in HH, the response proportion of

human-human interaction increased significantly as revealed by a positive correlation (r = .42,

p < .001). This finding suggests that humans are sensitive to the animacy manipulation in terms of

the frequency with which self-propelled forces occurred in the stimuli. For the OO animations, the

response proportion for object-object interaction among the four sub-categories yielded significant

differences (F (3, 196) = 34.42, p < .001 by an ANOVA), with the most object-object responses
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Figure 7.12: Constructed psychological space including HH animations with 100% animacy de-

gree, HO animations, and OO animations. In this figure, a stimulus is depicted by a data point

with coordinates derived by the model, and the colors of data points indicate the average human

responses of this stimulus. The two coordinates of the space are the averaged measures between

the two entities, as the measure of the degree of violation of physical laws (horizontal) and the

measure of maximum log-likelihood ratio of goal-directed trajectory over the background model

indicating the presence of intention. The mark shapes of data points correspond to the interaction

types used in the simulation for generating the corresponding stimuli (circle: HH, triangle: HO,

square: OO).

in the collision condition, and the least in the rod condition. Pairwise comparisons among the four-

categories show significant difference between collision and everything else (p < .001), between

soft rope and rope (p < .001), and also between soft rope and string (p = .018); there is a

marginally significant difference between rod and string (p = .079).

We then combined human responses and the model-derived measures for each animation stim-

ulus to depict the unified psychology space for the perception of physical and social events. Fig-

ure 7.12 presents the distributions of 100 HH videos with 100% animacy degree, 150 HO videos,

and 200 OO videos, all in this unified space. In this figure, an animation video is indicated by a

data point with coordinates derived by the model, and the colors of data points indicate the average

human responses of this stimulus. Specifically, the values of its RGB channels are determined by

the average human-human responses in red, human-object responses in green, and object-object
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responses in blue. The mark shapes of data points correspond to the interaction type used in the

simulation for generating the synthesized animations. The coordinates of each data point were

calculated as the model-derived measures averaged across the two entities in an animation, i.e.,

Eq. (7.14) for physical violation and Eq. (7.18) for the log-likelihood ratio of the trajectory of an

entity is driven by a goal. The resulting space showed clear separations between the animations

that were judged as three different types of interactions. Animations with more human-human in-

teraction responses (red marks) clustered at the top-right corner, corresponding to great values of

intention and strong evidence signaling the violation of physics. Animations with high responses

for object-object interactions (blue marks), located at the bottom left of the space, show low values

of intention index and little evidence of violation of physics. Animations with high responses for

human-object interactions (green marks) fell in the middle of the space.

To quantitatively evaluate how well the model-derived space accounts for human judgments,

we trained a classifier using the coordinates derived in the space shown in Figure 7.12 as input

features (D andL for the indices of physical violation and intention respectively). For each ground-

truth type of interactions y ∈ {HH,HO,OO}, we fit a 2D Gaussian distribution py(D,L), using

half of the stimuli as training data. Then for a given animation with the coordinates of (D,L), the

classifier predicts p(y|D,L) = py(D,L)∑
y py(D,L)

for animations in the remaining half of the stimuli. The

correlation between the model predictions and average human responses was 0.815 (p < .001)

based on 2-fold cross-validation. Using a split-half reliability method, human participants showed

an inter-subject correlation of 0.728 (p < .001). Hence, the response correlation between model

and humans closely matched inter-subject correlations, suggesting a good fit of the unified space

as a generic account of human perception of physical and social events based on movements of

simple shapes.

We examined the impact of different degrees of animacy on the perception of social events,

and how different subcategories of physical events affect human judgments on interaction types.

The unified space provides a platform to compare these fine-grained judgments. Figure 7.13 shows

the centers of the coordinates and the average responses for each of the sub-categories. We first

found that, with a decreased degree of animacy, the intention index in HH animations was gradu-

ally reduced towards the level of HO animations. Meanwhile, human judgments of these stimuli
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Figure 7.13: Centers of all types of stimuli.

varying from low to high degree of animacy transited gradually from human-object responses to

human-human responses, consistent with the trend that the data points moved along the physics

axis. Among all physical events, the rod and spring conditions showed the highest intention index

and the strongest physical violation, respectively, resulting in a greater portion of human-human

interaction responses than the other categories.

7.5 Experiment 2

In Experiment 1, human participants were asked to classify the three interaction types. But for

human-object responses, the assignment of the roles to individual entities was not measured. In

Experiment 2, we focused on stimuli that elicited the classification of human-object responses,

and asked participants to report which dot was a human agent, and which dot was an inanimate

object. Specifically, the role assignment in the human-object responses helps us identify some key

characteristics in the psychological space that signal a human-object interaction.

7.5.1 Methods

25 participants (mean age = 20.2; 19 female) were recruited from the UCLA Psychology Depart-

ment Subject Pool. The top 80 HH videos and the top 80 HO videos that got the highest response
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proportions of being judged as HO category in Experiment 1were selected for Experiment 2. The

procedure of Experiment 2 was the same as Experiment 1 except that on each trial, subjects were

asked to judge among two dots, which dot represented a human agent and which dot represented

an object. One dot was red and the other was green and the colors were randomly assigned to the

two dots in each trial.

7.5.2 Results

We projected all entities onto the psychological space based on the model-derived measures for

each individual entity, and connected a pair of the two entities that appeared in the same video. To

make the scale of the two indices directly comparable, each of them was standardized to have a

mean of 0 and a standard deviation of 1. We visualized 5 HH animations and 5 HO animations that

yielded high human-object response proportions and the most consistent role judgment among par-

ticipants as shown in Figure 7.14a, where circles represent the dots that were frequently identified

as humans, and squares represent the dots identified as objects. The resulting segments showed

a common feature in that the human dot has higher degree of physical violation and/or a higher

intention measure compared to the object dot. To further examine the orientations in the space for

the human-object responses, we calculated the histogram of the orientations for animations judged

as human-object interactions, which shows a high concentration around 90 degrees for HH videos

and a high conentration between 0 and 45 degrees for HO videos (see Figure 7.14b). This finding

suggests that both physical violation and intention contribute to the subjects’ role judgment.

7.6 Conclusion

In this chapter, we propose a unified framework for modeling physical and social events from

movements of simple shapes in Heider-Simmel animations. We first build a joint physical-social

simulation engine and propose a new paradigm for unified physical and social concept learning.

Based on the Heider-Simmel animations generated by the simulation engine as well as the met-

rics for measuring physical violation and impression of intention using the learned computational

model, we then construct a unified psychological space to account for human perception of phys-
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Figure 7.14: Human and model-simulation results in Experiment 2. (a) Representative cases of

animations that elicited the human-object responses, located in the space with model-derived coor-

dinates. The colors reflects average human responses of assigning a dot to the human role (red) and

to the object role (blue). (b) Orientation histogram of the segments connected by the concurrent

pairs of entities in an animation.

ical and social events. The space consists of two primary dimensions: the intuitive sense of vi-

olation of physics, and the impression of intentions. We tested the space by measuring human

responses when viewing a range of synthesized stimuli depicting human-human, human-object,

and object-object interactions in the style of Heider-Simmel animations. We found that the con-

structed physics-intention space revealed clear separations between social and physical events as

judged by humans. Furthermore, we trained a classification model based on the coordinates of each

stimulus in this space. The resulting model was able to predict human classification responses at

the same level as human inter-subject reliability.

The present study provides a proof of concept that the perception of physical events and social

events can be integrated within a unified space. Such common representation enables the develop-

ment of a comprehensive computational model of how humans perceive and reason about physical

and social scenes. Perhaps the most surprising finding in our work is that the classification result

129



based on just the two measures reflecting the violation of physical laws and the estimate of inten-

tion can predict human judgment very well, reaching the same level as inter-subject correlation.

The good fit to human responses across a range of Heider-Simmel stimuli demonstrates the great

potential of using a unified space to study the transition from intuitive physics to social perception.

The main benefit of constructing this psychological space is to provide an intuitive assessment

for general impressions of physical and social events. To build up such representation, humans or

a computation model may use various cues to detect intentions and/or physical violations; such

cue-based detection is usually subjected to personal preferences. Instead of discovering a list of

cues for distinguishing between physical events and social events, the proposed space offers an

abstract framework for gauging how humans’ intuitive senses of physics and intentions interplay

in their perception of physical and social events.

This work provides a first step toward developing a unified computational theory to connect

human perception and reasoning for both physical and social environments. However, the model

has limitations. For example, the simulations are limited by a small set of goals, and the model

requires predefined goals and good knowledge about the constrained physical environment. Future

work should aim to extend the analysis to a variety of goals in social events [TL14], to develop bet-

ter goal inference, and to support causal perception in human actions [PTL17]. A more complete

model would possess the ability to learn about physical environments based on partial knowledge,

and to emulate a theory of mind in order to cope with hierarchical structures in the goal space. In

addition, we have only examined human perception of physical and social events on short stimuli

with only two entities. Generating longer stimuli with more entities and analyzing human per-

ception on them will further help reveal the mechanisms underlying humans’ physical and social

perception.
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CHAPTER 8

Conclusion

This dissertation aims at addressing three core problems in social scene understanding: group

activity parsing, human-robot interactions, and perception of animacy. For each of them, we have

proposed new formulations, new representations, and new algorithms for learning and inference.

We summarize the key contributions and findings in each problem as follows.

Group activity parsing. We proposed a framework for a joint parsing of groups, events and

human roles in group activities from noisy observations. We designed a stochastic grammar model,

spatiotemporal AND-OR graph (ST-AOG), as a new hierarchical representation for the underlying

structures of group activities in social scenes. For evaluation, an aerial event dataset with rich

social behaviors was collected with extensive annotations. Inspired by the recent success of deep

neural nets, we also extended the joint inference to structured neural nets to form a deep energy

based model. In both cases, experimental results on our aerial video dataset or public group activity

recognition benchmarks demonstrate that joint parsing and structured representations greatly can

greatly improve model performance on reasoning social concepts from real world videos.

Human-robot interactions. In the first part of the dissertation, we have shown the power

of grammar models in representing the knowledge learned from group activities. The nature of

such grammar models is to inform a computational model what humans typically do in social

interactions, namely social affordances. Hence, in the second part, we formulated social affor-

dances based on this representation (i.e., ST-AOG for human-human interactions), which can be

learned from a handful of human demonstrations. We then proposed a real-time motion inference

to transfer the social affrodance knowledge from ST-AOG to enable human-robot social interac-

tions. Experiments on simulation and a real Baxter robot show that symbolic plans derived from

our ST-AOG are able to capture the essence of a human interaction without over-imitation and
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consequently enhance the generalization of the motion transfer in unseen social scenarios.

Perception of Animacy. The final part of the dissertation outlined a unified framework of

modeling both physical events and social events based on simple visual input (geometric shapes’

motion trajectories), and showed how this framework can account for human perception of both

physical events and social events. In particular, under this framework, we i) built a joint physical-

social simulation engine, Flatland, to generate Heider-Simmel animations with rich and diverse

physical interactions and social behaviors, ii) formulated physical and social concept learning as

the pursuit of generalized coordinates and the corresponding parsimonious potential energy func-

tions, iii) constructed a unified psychological space with a dimension of the degree of physical

violation and a dimension of the impression of intention. Results from multiple human experi-

ments suggest that this framework is able to shed lights on how humans’ perception of animacy

integrates intuitive physics and intuitive psychology and how a computational model can reverse

engineer this integration.

We are still far from adequately solving these challenges. However, we hope that this disser-

tation can provide new insights into social scene understanding and inspire more research in this

fascinating area. For the future work, we may further explore the following aspects of social scene

understanding:

• Computational models for Theory of Mind. Inferring human mental states is a crucial part

of social perception, and humans can infer others’ mental states fairly efficiently. Hence,

it is essential to build computational models to robustly and efficiently infer human mental

states based on limited and noisy observations if we want machines to be able to live, work,

and communicate with humans. There has been some prior work on this [BST09, UBM10,

RPS18, WLS18], but they were designed to model human minds in very restricted environ-

ments. Furthermore, for multi-agent systems, it is also important for a machine agent to

build mental models of other agents which may be machines too, since an accurate estimate

of other agents’ intents, beliefs, and plans can significantly improve multi-agent planning or

reinforcement learning [QZ18, SKT18, SXW18, ST19].

• The emergence of social norms. How can we mathematically define social norms? Can we
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build a computational framework to explain the emergence of various social norms that have

been observed in human societies? These are key questions about understanding human

social behaviors at a large scale, which remain unanswered. Besides theoretical values,

they also have direct applications. For instance, once we have a better understanding of

the emergence of social norms in a computational sense, perhaps we can build a reasonably

accurate social simulation engine, just like how we can build realistic physics engines on top

of computational models that simulate physical laws.

• Representation learning for complex social scenes. We may represent social scenes by a

graph constructed by entities and their relations, by natural languages (e.g., telling a story

based on Heider-Simmel animations), by potential energy functions, by stochastic grammars,

by Bayesian networks, etc. But what are the best representations for describing complex

social scenes? How can we learn such representations and use them as transferable and ac-

tionable knowledge for applications such as human-robot interactions, education, and social

sciences where understanding social behaviors is critical? These are fundamental questions

that we need to answer in order to build interpretable models for social scene understanding.
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