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No other species possesses a social intelligence quite like that of humans. Our ability to understand
one another’s minds and actions, and to interact with one another in rich and complex ways, is the
basis for much of our success, from governments to symphonies to the scientific enterprise. My research
goal is to advance human-centered AI by engineering machine social intelligence to build socially
intelligent systems that can understand, reason about, and interact with humans in real-world settings.

Social intelligence is a highly interdisciplinary subject. To build AI systems that can achieve human-
level social intelligence, we need insights and techniques from different fields. My interdisciplinary train-
ing in computer science, statistics, and cognitive science allows me to connect computer vision, machine
learning, robotics, and social cognition to study machine social intelligence. In particular, I take inspi-
ration from social cognition to identify the developmental roadmap of social intelligence and introduce
benchmarks that systematically evaluate social intelligence in machines. I then combine deep learning,
planning, reinforcement learning, and probabilistic inference to create cognitively inspired machine learn-
ing and AI approaches for two key building blocks of social intelligence: i) social scene understanding
and ii) multi-agent cooperation. I have demonstrated that these approaches are resilient and data effi-
cient, generalize well in unseen situations, and can be deployed to real-world systems (e.g., drones and
humanoid robots).

I will summarize my work for the two key building blocks of machine social intelligence and discuss
directions for future research.

1 Social Scene Understanding
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Figure 1: (A) I devised a grammar model to jointly infer of social groups, events, and roles from aerial videos
captured by a drone [19]. (B) A similar grammar model can also learn social affordances from human interaction
videos to enable human-robot social interactions. (C, D) Diagnostic benchmarks, AGENT [11] and PHASE [7],
for physically grounded Theory of Mind reasoning. To understand the videos in these benchmarks, we need to
combine Theory of Mind with intuitive physics. For example, in (C), we can imagine what is behind the occluder
(right) after watching the agent’s actions (left) since we understand the physical condition in which a rational agent
should jump; and in (D), we need to understand how an agent acts with respect to the objects and obstacles in the
environment as well as other agents. (E) Model-based inference for engineering human-level physically grounded
Theory of Mind reasoning [13, 7, 11].

Human visual perception includes the ability to understand not only the physical environment but
also the people in it. By observing other people’s behaviors, we can easily understand their mental
states (e.g., goals, beliefs, and desires) as well as their social relationships with one another. To reverse
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engineer humans’ abilities to understand one another, I work on social scene understanding, where I build
cognitively inspired models that can make sense of human activities in videos by inferring the underlying
social structures and reasoning about individuals’ mental states. I have also collaborated with cognitive
scientists and developmental psychologists at MIT and Harvard University to create diagnostic machine
benchmarks following the experimental designs used in human social perception studies.

Recognizing social groups, events, and roles from real-world videos. Humans can represent
social scenes in rich and complex ways—we can detect social groups, recognize the social events that
groups engage in, and assign roles to individuals in those groups. In [19, 14, 15], I developed an approach
to jointly infer social groups, events, and roles from real-world videos. I proposed a visually grounded
spatiotemporal grammar as a structured representation of social interactions, which can be learned from
a small amount of training data. The learned grammar model combines bottom-up proposals (e.g., sub-
event detection) and top-down dependency parsing based on the spatial relationships between individuals
and the temporal relationships between sub-events. By combining these two processes, the learned
grammar model can holistically parse a video of human activities in a hierarchy, from motions to roles
to events and finally to groups. To evaluate this approach, I created an aerial video dataset consisting
of complex real-world social interactions in an open, public area with detailed ground-truth annotations
(Figure 1A). The experimental results show that our approach significantly outperforms bottom-up–only
baselines that directly map visual features to social judgments and is robust to noisy trajectories extracted
from the aerial videos. In [18], I extended this approach by proposing structured social activity recognition
enabled by energy-based modeling and a graph neural network, which boosts the performance of the
previous grammar-based model by incorporating deeply learned spatiotemporal representations. This
demonstrates the power of structured social scene understanding, which can take advantage of both
structured reasoning and deep representation learning.

Learning social affordances from videos. In [16, 12], I devised an algorithm to learn social
affordances (appropriate actions given a social context) in the form of spatiotemporal grammar from
RGB-D videos of real-life human interactions (Figure 1B). The proposed weakly supervised grammar
learning can automatically construct a hierarchical representation of a human-human interaction with
the long-term joint sub-tasks of both agents and the short-term atomic actions of individual agents. The
learned grammar allows us to transfer knowledge about social etiquette to human-aware robot motion
planning, enabling a robot to engage in human-robot social interactions, such as shaking hands or handing
over an object.

Physically grounded Theory of Mind reasoning. Social scene understanding goes beyond de-
tecting and recognizing social events. In [13, 7, 11], I studied physically grounded Theory of Mind (ToM)
reasoning, that is, inferring the mental states of agents from their complex social interactions under phys-
ical dynamics. I hypothesized that such reasoning can be built upon the understanding of how rational
agents plan their actions to achieve goals with respect to physical dynamics and constraints (i.e., intuitive
psychology), as well as the core knowledge of objects and physics (i.e., intuitive physics). I devised a
model-based inference approach, termed Generative Social-Physical Inference (GSPI), which jointly infers
the goals, relationships, and strengths of agents using a hierarchical planner and a physics engine as the
generative model of agents and objects (Figure 1E). Taking inspiration from classic experiments designed
for human social perception [6, 4], I also proposed two diagnostic benchmarks, AGENT (Action, Goal,
Efficiency, coNstraint, uTility) and PHASE (PHysically-grounded Abstract Social Events), as shown in
Figure 1CD. Each benchmark consists of a large-scale dataset of animations, depicting agents moving
under various physical conditions, interacting with objects and with one another. With these datasets, we
designed tasks in which models need to infer the mental states of agents and predict future trajectories.
Our experiments show that our model-based inference significantly outperformed existing state-of-the-
art methods due to its ability to generalize to unseen social and physical scenarios and estimate the
uncertainty in inference.
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Figure 2: (A) The VRKitchen platform allows human users to use VR devices to interact with objects and agents in
simulated kitchens [1]. (B) We developed another platform, VirtualHome-Social, to simulate multi-agent household
activities in realistic virtual apartments [9]. Based on this platform, we also proposed a new embodied AI assistance
challenge, Watch-And-Help [9, 10]. To solve this challenge, I devised a novel online assistance approach, which
combines neural networks, planning, and probabilistic inference [10]. (C, top) AI assistants in the real world must
understand user preferences. For instance, to help a user to set up a desk, an AI agent needs to infer how this
user wants to set up a desk (i.e., the goal specification behind this task). (C, bottom) To accurately infer such
goal specifications, the AI agent should be able to actively communicate with users and utilize user feedback to
efficiently update its understanding of the goal [8].

2 Multi-agent Cooperation

Our social interactions are guided by how we perceive one another. We help other people when we
recognize their goals and the difficulties they might have in reaching them; we further communicate with
them if we are uncertain about their true intentions. Therefore, I also study how we may use social scene
understanding to guide multi-agent cooperation.

Embodied human-AI cooperation. In my research on embodied human-AI cooperation, I aim
to engineer socially intelligent agents that can infer humans’ mental states and collaboratively plan to
work with humans in complex settings that are beyond traditional in-lab environments. To achieve this
goal, we developed realistic multi-agent virtual platforms—VRKitchen [1] and VirtualHome-Social [9]—
to collect datasets of human activities through virtual reality and online crowdsourcing and to train and
test embodied agents along with simulated humans or real humans (Figure 2AB). Unlike traditional
in-lab settings, such platforms allow us to create a large set of diverse environments that are close to the
real world. Besides human-AI cooperation, our platforms have been used in studies in other areas, such
as computer vision, smart homes, and robot planning.

In addition to building virtual platforms, we introduced a new embodied AI assistance challenge,
Watch-And-Help [9, 10], in which embodied assistants must simultaneously watch humans’ actions, infer
humans’ goals, and assist humans in reaching their goals (Figure 2B). This is inspired by how young
children can help others by inferring others’ intentions [22]. To solve this challenge, I proposed a novel
online assistance approach: Neurally-guided Online Probabilistic Assistance (NOPA). NOPA consists of
two main components: neurally guided online goal inference and an uncertainty-aware helping planner.
For online goal inference, we trained a goal proposal network to produce possible goal hypotheses and
evaluate the proposals using model-based inference. We then devised a hierarchical planning algorithm
that can identify useful subgoals that may be necessary for reaching a range of possible goals. The helper
agent enabled by NOPA can robustly update its inference and adapt its helping plans to the changing
level of uncertainty in real time. The success of NOPA demonstrates the value of neural-symbolic models
for building socially intelligent AI assistants in complex settings, in which neural networks can offer fast
inference speed, and symbolic reasoning can ensure the robustness of inference and planning.

Active user preference learning. For AI agents to assist humans in the real world, they must
have the ability to adapt to any user’s preferences. For instance, to help a user organize a desk, an AI
agent needs to understand how this particular user wants to set up a desk (Figure 2C). To this end, my
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recent work [8] studied how AI agents can discover the goal specification for any task that a user may
want to perform and reach the same goal in new environments. We formulated this problem as reward
learning, in which the agent needs to watch a single demonstration for a task and learn a reward function
to describe the goal of this task. This is a challenging learning problem since it is often unclear what the
goal specification is from a single demonstration. Inspired by cognitive science studies on how children
learn by forming and testing hypotheses [5], we designed an active reward learning algorithm that can
propose different hypotheses about what the goal specification is and generate informative queries for
the human user to verify the hypotheses. We conducted a user study to learn the spatial goals of object
rearrangement tasks (a type of common robotics task) via graph-based reward functions. The results
suggest that after only a small number of queries with a human user, our approach can drastically improve
the reward function initially learned from a single demonstration. The final reward function allows an
AI agent to perform the same task efficiently in unseen test environments.

Mind-aware reinforcement learning for ad hoc teaming. In [17], I explored the possibility of
learning implicit Theory of Mind reasoning for reinforcement learning (RL) to achieve ad hoc teaming.
Combining RL and self-supervised learning, I trained a belief tracker for an RL agent to learn to infer
implicit representations of other agents’ mental states and skills based on past observations accumulated
during interactions with them. I found that RL agents jointly trained with this belief tracker could suc-
cessfully adapt to ad hoc teammates on the fly and achieve a better generalization to unseen combinations
and numbers of agents compared to common RL baselines. This suggests that Theory of Mind capacity
may emerge via learning through experiences.

3 Future Directions

My current work has focused on the most fundamental aspects of social reasoning, such as inferring goals,
desires, and beliefs. However, humans can make far more complex and adaptable social inferences
than the current models. For instance, we can infer how other people interpret our own beliefs (i.e., nested
belief inference) and judge whether we have mutual understanding with one another. We can also learn
to adapt to different cultures and social norms. These abilities are not only crucial for understanding
human interactions and communication but also fundamental for building trustworthy AI systems. I have
taken initial steps in this direction, such as modeling nested inference in a new multi-agent framework,
social MDPs [20, 21]. In the future, I intend to study i) how to create efficient inference algorithms that
can conduct nested belief inference rapidly in complex social interactions and ii) how to develop machine
learning methods to acquire knowledge about norms and conventions from little data.

Another key direction that I intend to explore more in the future is developing general frameworks for
embodied social intelligence, including cooperation, communication, and social learning in realistic
environments, by combining vision, language, and robotics. These frameworks will include multi-modal
interactions between AI agents as well as between humans and AI agents. For this, we need new formalism
and algorithms for multi-agent interaction and learning. We also need to build better embodied AI
platforms that have not only high-fidelity physical simulation but also realistic human behavior modeling.

To achieve successful human-AI cooperation, both the human user and the AI agent need to under-
stand each other. This requires an alignment between humans and AI to reach a mutual under-
standing of each other’s mental models. In my past work, I have attempted to solve this problem through
communication. In [3], we proposed a new type of motion planning method to generate expressive robot
motion as a type of nonverbal communication to calibrate humans’ beliefs about a robot’s true physical
capabilities. In [2], we introduced a novel explainable AI framework for generating multimodal messages
to communicate with humans after detecting discrepancies between humans’ beliefs and agents’ own be-
liefs [2]. In both cases, humans found the AI partners more helpful and trustworthy when communication
was enabled by our mutual mental modeling. For future work, I will investigate more general algorithmic
alignment methodologies.
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Finally, children develop increasingly sophisticated social intelligence through diverse experiences.
Taking inspiration from studies on the origins and development of human social intelligence, I plan
to study the role of learning in social intelligence. I am particularly interested in building continuous
machine learners that can develop stronger social intelligence from human-like experiences accumulated
through interactions with the physical world and other agents, using only a minimum set of inductive
biases, such as core knowledge of intuitive physics and intuitive psychology.

In sum, engineering human-level machine social intelligence is crucial for building AI systems that
can understand humans and interact with them in safe and productive ways. Successful deployment of
such socially intelligent systems in real-world applications (such as autonomous vehicles, service robots,
virtual companions in AR/VR, and AI teachers) will have a tremendous impact on our daily lives and
on our society. To realize this future, I believe that we as AI researchers must pay more attention to the
social aspect of AI and invest more efforts into the study of machine social intelligence. I also believe
that we must bring together ideas and advances from different fields (including AI, robotics, cognitive
science, and developmental psychology) through interdisciplinary collaboration to further the research on
machine social intelligence.
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