
Zero-shot linear combinations of
grounded social interactions with Linear Social MDPs

Ravi Tejwani1*, Yen-Ling Kuo1∗, Tianmin Shu2, Bennett Stankovits1, Dan Gutfreund3

Joshua B. Tenenbaum2, Boris Katz1, Andrei Barbu1

1CSAIL & CBMM MIT; 2BCS & CBMM, MIT; 3MIT-IBM Watson AI Lab
{tejwanir,ylkuo,tshu,bstankov,jbt,boris,abarbu}@mit.edu, dgutfre@us.ibm.com

Abstract

Humans and animals engage in rich social interactions. It is
often theorized that a relatively small number of basic social in-
teractions give rise to the full range of behavior observed. But
no computational theory explaining how social interactions
combine together has been proposed before. We do so here.
We take a model, the Social MDP, which is able to express a
range of social interactions, and extend it to represent linear
combinations of social interactions. Practically for robotics
applications, such models are now able to not just express that
an agent should help another agent, but to express goal-centric
social interactions. Perhaps an agent is helping someone get
dressed, but preventing them from falling, and is happy to
exchange stories in the meantime. How an agent responds
socially, should depend on what it thinks the other agent is
doing at that point in time. To encode this notion, we take
linear combinations of social interactions as defined in Social
MDPs, and compute the weights on those combinations on the
fly depending on the estimated goals of other agents. This new
model, the Linear Social MDP, enables zero-shot reasoning
about complex social interactions, provides a mathematical
basis for the long-standing intuition that social interactions
should compose, and leads to interesting new behaviors that
we validate using human observers. Complex social interac-
tions are part of the future of intelligent agents, and having
principled mathematical models built on a foundation like
MDPs will make it possible to bring social interactions to
every robotic application.

Introduction
Machines are only able to understand and reproduce a fairly
small and stilted part of the rich social behaviors that we
observe humans and animals engage in. This is in part be-
cause much of the work on social robotics is based on adhoc
approaches rather than mathematical models of social inter-
actions, and in part because of an assumption that a relatively
small number of basis social interactions will eventually give
rise to the rich behavior we observe in the animal kingdom.
Exactly what combining social interactions together means
mathematically is left unsaid in such cases. We propose a
model for social interactions and demonstrate it on a simu-
lated robot that both has a mathematical definition for what
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social interactions are, and, for the first time, defines what
linear combinations of social interactions are. This gives rise
to complex behaviors enabling the robot to have relationships
that depend on mutual goals, for example, helping an agent
achieve some goals, while being willing to exchange favors
to achieve another set of goals, while preventing the other
agent from doing something troublesome.

We make the following contributions, 1. Linear Social
MDPs, see Fig. 1, which allow robots to zero-shot carry out
combinations of social interactions that respond on the fly
as the goals of other agents change, 2. a demonstration of
Linear Social MDPs in a grid world, see Fig. 2 for an example,
and 3. validation of the resulting behaviors that humans can
recognize them as social.

Related Work
Most research on social robotics is carried out without a
model of what social interactions are (Sheridan 2020). We
propose a model that gives rise to complex social behaviors.
In general, we believe that mathematical models for social
interactions that are understandable from the perspective of
robotics and compose with common robotic frameworks like
MDPs, will both shed light on what social interactions are,
and bring social robotics into the mainstream.

Several types of models have been explored to enable
agents to effectively interact with one another. Inspired by
cognitive science, models based on theory of minds (Baker
and Tenenbaum 2014; Kleiman-Weiner et al. 2016; Rabi-
nowitz et al. 2018) and Bayesian inverse planning (Baker,
Saxe, and Tenenbaum 2009; Ullman et al. 2009) are used for
goal inference. In reinforcement learning, methods like learn-
ing reward functions of other agents (Hadfield-Menell et al.
2016) and learning a latent representation of other agents’
strategies (Xie et al. 2020) are used to cooperate with another
agent. These methods mainly consider interactions that are
cooperation or conflict.

Social MDPs (Tejwani et al. 2021, 2022) similarly esti-
mate another agent’s reward function but this estimation is
performed recursively by solving MDPs at different levels.
This recursive estimate enables a robot to perform social
interactions by considering the other agent’s social behav-
iors. Our model extends Social MDPs to change their social
interactions to adapt to another agent’s goals. In epistemic
planning (Bolander and Andersen 2011), planners also in-
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Figure 1: A yellow robot, i, performing nested inference about social interactions with a red robot, j. A level 0 agent is an MDP;
a level 1 agent has social goals, but reasons about other agents as if they are level 0, so they don’t have social goals. Here, the
yellow agent is a level 2 agent; it considers any social interactions that the red agent might have. This is the basic setup for
a Social MDP, with a critical difference – agents compute the goals of another agent, g, and then compute the compatibility
between those goals and a set of N social interactions, ω, they wish to engage in. The social behavior of the robots is conditioned
on the goals they believe the other agent has.

corporate other agents’ goals and beliefs. While our com-
binations of social goals are introduced in the Social MDP
framework, a similar idea can be incorporated into epistemic
planning to consider multiple social goals in addition to phys-
ical goals.

Prior research on goal or task selection includes using
symbolic planners (Shu et al. 2020), a situation model (Ver-
non et al. 2022), or task relevancy (Santucci, Baldassarre,
and Cartoni 2019). These approaches require understanding
about knowledge of the task or planning domains. In multi-
agent settings, game theoretic approaches such as fictitious
play (Brown 1951) have been applied in coordination (Eksin
and Ribeiro 2015, 2017) and trajectory forecasting (Ma et al.
2017) scenarios to select strategies. Approaches such as se-
lecting policy based on other agents’ goals (Mohseni-Kabir,
Isele, and Fujimura 2019) or planning by finding equilib-
ria (Bowling, Jensen, and Veloso 2003) also consider what
other agents may want to do in action selection. Our model
also considers other agents’ goals, but use it for social inter-
actions. The combinations of social interactions formulated
in our model can respond to changes in the goals of other
agents in a manner which no prior work could do before.

Linear Social MDPs
Our model extends Social MDPs (Tejwani et al. 2021, 2022)
to condition the social goal on the physical goal of another
agent. Social MDPs operate by encoding social interactions in
the reward function of an MDP. Agents estimate what another
agent is doing, i.e., their reward function, then incorporate
that reward function into their own. How they incorporate
another agent’s reward functions determines what social inter-
action takes place. Incorporating the reward of another agent
directly ensures that the two agents’ incentives are aligned

and they are likely to help one another. Doing so with the
opposite sign ensures that the agent will try to minimize the
reward of another agent, appearing to conflict. Reasoning in
Social MDPs is nested, where agents can be social toward
agents they consider asocial (level 1 reasoning), or toward
agents that they assume will also be social (level 2 reasoning).
Deeper levels of reasoning allow for more complex social
inferences.

Social MDPs have a major drawback: they can only en-
code one social interaction regardless of what the other agent
is doing. An agent that is being helpful will always be help-
ful, even if the other agent is doing something harmful; this
is an unrealistic and unreasonable limitation for real-world
applications. We create Linear Social MDPs to overcome
this problem by allowing for linear combinations of social
interactions where the coefficients of the interaction depend
on the estimated goals of another agent. The degree to which
the other agent’s goals align with any one social interaction
determine how strongly it will be incorporated into an agent’s
reward function. As a result, agents can go from being help-
ful, to being asocial, to being unhelpful, etc. in the course of
a short interaction.

A Linear Social MDP for an agent i interacting with agent
j at level, l, is defined as:

M l
i = ⟨S,A, T,Ωij , gi, R

l
i, γ⟩ (1)

where S is a set of states s; A = Ai ×Aj is the set of joint
actions of agents i and j; T is the probability distribution of
going from state s ∈ S to next state s′ ∈ S given actions of
both agents: T (s′ | s, ai, aj); Ωij is agent i’s intended social
goal with agent j, it consists of a set of grounded social
interactions ωij ; gi is agent i’s physical goal; Rl

i is the l-th
level reward function for agent i based on its estimate of
other agents’ rewards; and γ is a discount factor, γ ∈ (0, 1).



The physical and social goals for the two robots are the same for each example:
Yellow’s goals → , → , compete for →
Red’s goals → , → , exchange for , cooperate →

(a) Yellow: Level 1, Red: Level 0 Video: https://linear-social-mdp.github.io/scenarios/scenario-77/\#level-1

Key frames

Frame 3 Frame 6 Frame 12 Frame 18 Frame 27

Yellow’s behavior → →
compete

→
→ →

Yellow’s estimate
of Red’s goal → → → → →

Yellow brings water to the tree while Red is pushing the wood. As Red approaches Yellow briefly competes with Red to
hurriedly move the water away.

(b) Yellow: Level 2, Red: Level 1 Video: https://linear-social-mdp.github.io/scenarios/scenario-77/\#level-2

Key frames

Frame 2 Frame 6 Frame 9 Frame 12 Frame 21 Frame 26

Yellow’s behavior → → → → →
compete

→
Yellow’s estimate

of Red’s goal → → exchange

for

cooperate

→
cooperate

→
cooperate

→
Rather than competing, Yellow and Red cooperate. This is possible because at Level 2, Yellow can recognize that Red has
the capacity to cooperate, and Red has the ability to try to cooperate by exchanging objects. Neither of these are possible in
(a) as neither agent is social enough.

(c) Yellow: Level 3, Red: Level 2 Video: https://linear-social-mdp.github.io/scenarios/scenario-77/\#level-3

Key frames
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→
→
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exchange
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→
conflict

→
conflict

→
As the level of both agents goes up, they become more social. Yellow thinks that Red is constantly attempting to respond
socially to it, leading to both more cooperative behavior and more conflicts toward the end.

Figure 2: Three scenarios starting from the same initial conditions, with the same two robots, having the same goals (shown at
the top), and the same five objects/locations ( , , , , and ). Each time, both robots are reasoning at different
levels of recursion; deeper levels of recursion lead to more complex behavior as they assume the other agent is more social.
The graphical model for the first two levels of social reasoning is shown in Fig. 1. First, we show key frames from videos of
the robot’s behavior, then we show what physical and social goals the robots had at various times. We then provide a brief
description of what the robots did. Note the increasingly complex behavior at deeper levels of social reasoning. Full videos for
all the scenarios with results are available in our online appendix https://linear-social-mdp.github.io/scenarios/



l Levels of recursive reasoning
st Observed state at time t
ati, a

t
j Actions for agent i and j at time t

gi i’s physical goal
Ωij i’s social goal toward j
ωij i’s each grounded social interaction toward j in social goal Ωij

ψl
i i’s social policy computed at level l

g̃l,i,tj j’s physical goal estimated by i from level l at time t
Ω̃l,i,t

ji j’s social goal toward i estimated by i from level l at time t
ω̃l,i,t
ji j’s each grounded social interaction toward i in social goal Ω̃l,i,t

ji esti-
mated by i from level l at time t

ψl−1,i
j j’s social policy at level l − 1 estimated by i

Rl
i i’s reward function at level l

r(s, gi) i’s reward for physical goal gi
Rl

Ωij
i’s social reward toward j at level l

c(ai) Cost for taking action ai
gωij Physical goal involved in the grounded social interaction ωij

ξωij
Type of social interaction involved in the grounded social interaction ωij

Ql
i i’s state value function at level l

To compute the policy ψl
i:

Require: l, st, ati, atj ,Ωij , gi
if l = 0 then

solve MDP for agent i
else

g̃l,i,tj ← sample P (g̃l,i,tj |s1:t−1)

Ω̃l,i,t
ji ← compute P (ω̃l,i,t

ji |s
t−1, at−1

i , at−1
j )

ψ̃l−1,i
j ← ψ̃l−1,i

j (st, atj , a
t
i, Ω̃

l,i,t
ji , g̃l,i,tj )

compute Rl
i(s

t, ati, a
t
j ,Ωij , gi)

compute Ql
i(s

t, ati, a
t
j ,Ωij , gi, ψ̃

l−1,i
j )

ψl
i ← argmaxai∈Ai

Ql
i

end if

Figure 3: (left) A gloss of the key notation used. (right) The algorithm to solve Linear Social MDPs at each time step. We use the
estimated social policy ψ̃i,l−1

j at the previous time step to update the estimated rewards. At t = 0 goals are sampled uniformly.

In this formulation, we assume that all agents have access to
the full space of physical and social goals, that the domain
is fully observable, and that we cannot change the goals of
other agents by interacting with them socially..

Representing combinations of social interactions

Each ω ∈ Ωij is a grounded social interaction with two
components: ξωij

, one of the five types of social interaction
that i should carry out toward j as defined in Tejwani et al.
(2022); and gωij

, the physical goal that i should think j is
pursuing when this social interaction should be carried out.
Together, these two components define a social interaction
that is specific to a set of physical goals. For example, helping
means helping by a physical action.

The overall reward of an agent i at each time step is com-
puted as follows:

Rl
i(s, ai,aj ,Ωij , gi) =

r(s, gi) +RΩij (gi, s, ai, aj)− c(ai)
(2)

where Ωij is a set of social goals conditioned on physical
goals of other agents (we allow for any linear combination of
such), gi is the physical goal of the current agent if any, and
c(ai) is the cost of an action. Originally, rewards for Social
MDPs were formulated in terms of distances between goals,
but this restricted the framework to goals between which one
could compute a reasonable Euclidean distance. We relax
this condition here and instead compute the distance between
physical goals as the shortest path from the current world
state to the physical goal state, r(s, gi).

The social component of the reward function uses ξωij

to transform the estimated reward of another agent into a
social behavior; see main table in Tejwani et al. (2022) for
a breakdown. Agent i’s social reward when interacting with

agent j is then

Rl
Ωij

(gi, s, ai, aj) =∑
ωij∈Ωij

∫
ω̃l,i

ji

P (ωij |s)P (ω̃l,i
ji | s, ai, aj)ξωij

(gi, gωij
, ω̃l,i

ji ) dω̃
l,i
ji

(3)
This weighs a social behavior ξωij by whether that behavior
is relevant to another agent’s goals gωij

: P (ωij |s) ≈ P (g̃j =
gωij
|s), computed with Eq. (7).

Planning with Linear Social MDPs
The Q function is the sum of immediate reward and the
expected value in the future by considering the estimated
social policy of other agent j at a lower level l-1.

Ql
i(s,ai, aj ,Ωij , gi, ψ̃

l−1,i
j ) = R(s, ai, aj ,Ωij , gi)

+ γ
∑
s′∈S

T (s, ai, aj , s
′)V l

i (s
′,Ωij , gi, ψ̃

l−1,i
j )

(4)

We denote the estimated social policy for agent j at reasoning
level l − 1 as ψ̃l−1,i

j : S × A × Ω̃l,i
ji × G̃l,i

j → [0, 1]. To
compute the state-action value V l

i (s
′,Ωij , gi, ψ̃

l−1,i
j ), Linear

Social MDPs take the expectation over the estimated goals
and actions of agent j:

V l
i (s

′,Ωij , gi, ψ̃
l−1,i
j ) = max

a′
i∈Ai

{
Eg̃l,i

j ,Ω̃l,i
ji ,a

′
j
[Ql

i(s
′, a′i, a

′
j ,Ωij , gi, ψ̃

l−1,i
j )]

}

= max
a′
i∈Ai

{ ∑
a′
j∈Aj

∑
g̃l,i
j

∫
ω̃l,i

ji

P (g̃l,ij |s
1:t)︸ ︷︷ ︸

estimate physical goal(Eq. 7)

P (ω̃l,i
ji | s, ai, aj)︸ ︷︷ ︸

estimate social goal
(Eq. 6)

ψ̃l−1,i
j (s′, a′i, a

′
j , ω̃

l,i
ji , g̃

l,i
j )︸ ︷︷ ︸

estimate social policy
(Eq. 8)

Ql
i(·)dω̃

l,i
ji

}

(5)
Fig. 1 shows the overview of the model. For agent i at level

l, the distributions of estimated physical goal and grounded



social interaction of agent j (g̃l,ij and ω̃l,i
ji ) are used to update

the agent j’s social policy so we can get the actions agent
j may take. While each agent may have multiple grounded
social interactions, we consider only one estimated social
goal for the other agent j at each time step when solving each
agent’s MDP. Fig. 3 (b) summarizes the steps to compute
the state-action values and select optimal actions for any
level l at time step t. We first update the distribution of the
estimated goals of the other agent j using the observed state
and the estimated policy from the previous time step. We
then sample the goals to update the policy of the other agent
j and compute the reward and Q function of the target agent
i.

An agent’s estimate of another agent’s physical and social
goals at time step t and level l can be updated based on the
actions performed by the agents. At t = 0, we use uniform
distributions for physical and social goals. The social goal,
estimated at time step t, is updated after actions taken by all
agents at the previous time step.

P (ω̃l,i,t
ji | s

1:t−1, a1:t−1
i , a1:t−1

j ) ∝ P (ω̃l,i,t−1
ji | s1:t−2, a1:t−2

i , a1:t−2
j )∑

g̃l,i,t−1
j

P (at−1
j | st−1, ω̃l,i,t−1

ji , g̃l,i,t−1
j )× T (st−1, at−1

i , at−1
j , st)

(6)
The physical goal gj of agent j is estimated by agent i as

follows. It is marginalized over the estimated grounded social
interaction as the agent is estimating the social goal at the
same time.

P (g̃l,i,tj |s1:t−1) ∝∫
ω̃l,i,t

ji

P (s1:t−1|g̃l,i,tj , ω̃l,i,t
ji )P (g̃l,i,tj )P (ω̃l,i,t

ji ) dω̃l,i,t
ji

(7)

The social policy ψ̃l−1,i
j of the agent j at level l-1 is pre-

dicted by i using the Q-function at level l-1:

ψ̃l−1,i
j (s, ai, aj , Ω̃

l,i
ji , g̃

l,i
j ) =

Softmax(Ql−1
j (s, ai, aj , Ω̃

l,i
ji , g̃

l,i
j , ψ̃

l−2,j
i ))

(8)

This is a softmax policy where we use a temperature param-
eter τ to control how much the agent j follows greedy actions.
As shown in Eq. (5), in order to use agent j’s Q-function at
level l-1, it requires to compute agent i’s Q-function at level
l-2, and so on. Recursively solving Linear Social MDPs even-
tually bottoms out in level 0 where one solves an MDP.

Experiments
The produced social interactions are only meaningful when
humans can recognize them as social. In the experiments, we
want to understand if the behavior produced by the Linear
Social MDP agrees with human ideas of the magnitude and
valence of the social interaction. We first used the Linear
Social MDP to generate a collection of social interactions
between two agents rendered as videos. Human subjects are
asked to recognize the social goals of the agents. Unlike the
original Social MDPs where interactions were fixed, here
the interactions change over the duration of the scenario as
the agents switch between goals. Additionally, we wanted to

understand if Linear Social MDPs can recognize these social
interactions, not just produce them. We then compare Linear
Social MDPs and other baseline models to understand to what
extent the models could determine what social interactions
were being carried out.

Environment We use a two-agent (a yellow and a red
robot) 10x10 grid-world environment, with five actions
(move in one of four directions or stay in place), three physi-
cal goals (watering the tree, adding logs to a fire, and sawing
logs), three locations (tree, fire, and saw), and two objects (a
log and a water can). In addition to the three physical goals,
there are five social goals (cooperation, conflict, competition,
coercion, or exchange), each related to one or more physical
goals. Robots can move objects by pushing them.

In all experiments, each robot always attempts to achieve
two physical goals while engaging in social interactions rela-
tive to those goals. Those social interactions are conditioned
on the physical goals of the other agent; or rather, on what the
first agent thinks the second agent is doing. Despite having
a fully-observable environment, agents do not have access
to each other’s internal states and must estimate each other’s
goals.

We explored every social scenario in this environment1.
The Yellow robot always had at most one social interaction,
while the Red robot always had at most two social interac-
tions. This resulted in 6 ∗ 6 ∗ 5 = 180 scenarios (eliminating
the cases where neither agent considers any social interac-
tion).

State Space and Solver Details A state is defined as an 8-
tuple, consisting of (x,y) coordinates of both agents and their
resources, with each component as an integer from 0-9. States
are densely mapped to their indices, so the value function
can be represented as a float array as large as the state space
(109 elements in our case). For each state, the solver finds
the action that maximizes the value of the next state and
updates the value estimate by the Bellman equation. A given
state and action results in multiple possible next states due
to uncertainty in how another agent acts. For level 0, the
solver solves the MDP for just the agent itself from its own
actions while for higher levels, its actions are weighed by its
estimated level 0/1/2 policies. Policies are stored as element-
wise exponential of a value functions, which are combined
linearly when the policies are composed probabilistically.

Solver Performance The solver for Linear Social MDPs
was implemented in C++ and CUDA to perform GPU-
accelerated value iteration2. On a workstation with an
RTX3090, updating the value estimates in parallel over 109
states takes about one minute. With 50 iterations, level 1 Lin-
ear Social MDPs takes about 40s, while level 3 Linear Social
MDPs takes about 10 minutes.

Baseline Models We compared our model with inverse
planning (Baker, Saxe, and Tenenbaum 2009) and a time

1All scenarios with detailed results for all experiments and mod-
els are available on our website https://linear-social-mdp.github.io

2Code is available at https://github.com/Linear-Social-MDP/
linear-social-mdp-framework
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Figure 4: Humans and Linear Social MDPs were asked to predict the social interaction in each scenario at every time step. This
is the result for the Yellow estimating the Red in the scenarios shown in Fig. 2. For Social MDPs, we show the probability of
grounded social interactions conditioned on each potential physical goal (P (ω̃l,i

ji |s, ai, aj , gωji)).

series classifier.
We used Bayesian inverse planning (Baker, Saxe, and

Tenenbaum 2009; Ullman et al. 2009) to infer agents’ goals,
given observations of their behavior. The Bayes net structure
generated by multiagent planning and over which inferences
are made about goals of the agents is described in Ullman
et al. (2009). The state reward function induced by a social
goal depends on the cost of another agent’s action, as well as
the reward function of the other agent that it wants to interact
with. The other agent j’s reward function was defined to be
the difference of the expectation of i’s reward function and
j’s action cost function. The scaling of the expected reward
of state S for agent i determines how much j cared about
i relative to its own costs. For cooperative agents, the scale
was positive, and for conflicting agents, the scale is negative.

The classifier is based on concatenated features from each
frame of each video (Ullman et al. 2009; Shu et al. 2020).
We built a feature vector for each robot consisting of their
coordinates, distance to each resource, and whether the robot
is at the goal state. These features were then input to an
LSTM, the final state of which was decoded into one of the
five interactions.

Human Experiments We rendered the generated social
interactions as videos and conducted an IRB-approved study

with human subjects recruited on Prolific3. A web interface
was used to present videos of the robots engaging in social
interactions. Subjects were first shown several examples of
each social interaction. Then, they were presented videos of
social interactions and asked to classify the physical goal of
a target robot (one out of three forced choice), to classify any
social interactions related to that physical goal (one out of five
forced choice), and to then rate their confidence. Videos were
selected randomly. We incrementally show partial videos and
ask humans to make social judgements, starting from 25%,
50%, then 75% of the video, and finally showing the full
video. 12 subjects (mean age 36) were paid an hourly rate
of $12. On an average, each subject took 11.3 minutes to
complete the experiment.

Results We summarize the accuracy of the social inter-
action recognition task by humans and models in Table 1.
Humans were able to recognize all of the social interactions
and their related physical goals with high accuracy (chance
is 20%, mean accuracy was almost always above 70%). This
clearly shows that the Linear Social MDPs are able to per-
form social interactions conditioned on specific goals. A
qualitative comparison between human judgements and the

3Prolific website: https://www.prolific.co



Social Interaction Human Linear Social MDP (Ours) Inverse Planning LSTM

Cooperation 0.798 ± 0.082 0.761 ± 0.052 0.742 ± 0.022 0.521 ± 0.147
Conflict 0.788 ± 0.069 0.712 ± 0.033 0.717 ± 0.041 0.459 ± 0.172

Competition 0.683 ± 0.081 0.659 ± 0.117 0.431 ± 0.098 0.278 ± 0.131
Coercion 0.808 ± 0.142 0.784 ± 0.165 0.323 ± 0.241 0.172 ± 0.146
Exchange 0.669 ± 0.127 0.681 ± 0.188 0.446 ± 0.223 0.081 ± 0.127

Table 1: Human and model accuracy on social interaction recognition. Mean and standard deviation of the models over four
random seeds are reported. Humans rated how well they could understand the social interactions produced by Linear Social
MDPs. Chance is 20%; overall, they were able to recognize every social interaction, with “exchange” being the most difficult.
Linear Social MDPs could recognize the resulting videos as well, while the inverse planning-based model and the LSTM had
difficulty doing so. Linear Social MDPs produce videos that are understandable to humans, and they can recognize such videos
even when other models can’t. The recognition results by human and models across five social interactions are all significant
(p < 0.05) compared with no difference among social interactions.

model is shown in Fig. 4, full results are available on our
website.

The Linear Social MDPs are themselves able to recognize
the goals and social interactions in the resulting videos. While
the inverse planning model and the LSTM had much lower
performance.

Limitations
As with many methods which directly execute MDPs infer-
ence, times are slow and don’t scale well. This is exacerbated
by the recursive nature of Social MDPs. At present, Social
MDPs would be hard pressed to run online. We are exploring
GNN-based approximations to Social MDPs to make them
practical for online inference.

Social MDPs assume a fully observable state (although,
note that this doesn’t include the goals/rewards, both social
and physical, of other agents; these are not available and
must be inferred). Social POMDPs would alleviate this prob-
lem, and while they are quite straightforward to formulate,
efficient inference remains a challenge.

A fundamental unknown is the contents and size of the
basis space of social interactions and the set of operators that
combine social interactions. There are no known methods
to determine what space of the full range of social interac-
tions that humans and animals engage in these methods can
account for. Even categorizing or recognizing social interac-
tions remains challenging. We are working on using these
methods to parse videos of social interactions, not just gener-
ate behaviors, as a step in this direction.

Moreover, when Social MDPs engage in helping, there
is no guarantee that they will display the full range of be-
haviors that humans would recognize as helping. Indeed, at
least some types of interactions like ‘help’ are not accounted
for; for example, Social MDPs assume that goals are static,
so helping someone by changing their mind is impossible.
Since Social MDPs are fully observable, it is also impossible
to help someone with information, aside from information
about the mental states of other agents, but even this latter
information is not communicated or included in the sense
of help. More broadly, as described above, not only is the
space of social interactions unknown, the range of each type
of social interaction is unknown. Building such models and

running experiments with human subjects is one step toward
gaining this kind of understanding.

Finally, we consider the same specific type of social inter-
action as that of Social MDPs: social interactions that arise as
a consequence of some social principle and can be modeled
zero-shot, rather than social conventions. All societies have
conventions that must be learned, like taboos, pleasantries,
etc. Practically, for example, this may mean that an agent can
touch some agents but not others, adding nuance to how an
agent may be helped or hindered. In principle, such knowl-
edge could be added a prior over the Social MDP being used,
and indeed, one might define and discover social conventions
automatically as the residual knowledge after reasoning about
the principled social interaction. Being able to reason about
combinations of social interactions, as we do here, is a step
toward tackling such problems.

Conclusion
Linear combinations of social interactions are meaningful and
lead to powerful new behavior. They allow MDPs to encode
complex social interactions, where agents are not just broadly
helping one another, but display a wide range of interactions
that change in response to other agents’ goals. This is encoded
by making the coefficients of the linear combination depend
on the goals of other agents. The resulting models engage
in zero-shot social interactions as long as the underlying
problem domain can be encoded as an MDP.

We are working on demonstrating Social MDPs on robots
while they play physical multiplayer games with humans.
Many games can be specified as MDPs, and we would like
to have a plug-and-play solution where a generic software
package can drive social behavior. We are working on lifting
many of the limitations described above as well as on further
human experiments to validate the approach and discover
enhancements to the framework. In the long term, we hope
to put social robotics on a firmer mathematical foundation
as well as provide datasets and benchmarks that will make
social interactions a first class citizen in machine learning
and robotics.
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