
Supplementary Material
Neural Amortized Inference for Nested Multi-agent Reasoning

Kunal Jha1, Tuan Anh Le2, Chuanyang Jin3, Yen-Ling Kuo4,
Joshua B. Tenenbaum5, Tianmin Shu5,6

1Dartmouth College, 2Google Research, 3New York University, 4University of Virginia, 5Massachusetts Institute of
Technology, 6Johns Hopkins University

kunal.a.jha.24@dartmouth.edu, tuananhl@google.com, cj2133@nyu.edu, ylkuo@virginia.edu, jbt@mit.edu,
tianmin.shu@jhu.edu

Derivation of Eq. (4)
First, we have

p(is1:ti,ℓ , o
1:t
i |a1:t−1

i)

= p(s1:t, b1:t−1
j,ℓ−1, θj , o

1:t
i |a1:t−1

i)

= p(o1:ti |s1:t)p(θj)p(b1:tj,ℓ−1|is1:t−1
i,ℓ , o1:ti , a1:t−1

i)

·
∑

a1:t−1
j

p(s1:t|a1:t−1
i , a1:t−1

j)πj,ℓ−1(a
1:t−1
j |b1:t−1

j,ℓ−1, θj). (1)

If we assume that the observation of an agent is deter-
ministic given a state and that the prior of θj is a uniform
distribution, then we can simplify the above equation as

p(is1:ti,ℓ , o
1:t
i |a1:t−1

i)

= p(b1:tj,ℓ−1|is1:t−1
i,ℓ , o1:ti , a1:t−1

i)

·
∑

a1:t−1
j

p(s1:t|a1:t−1
i , a1:t−1

j)πj,ℓ−1(a
1:t−1
j |b1:t−1

j,ℓ−1, θj) (2)

As discussed in the main paper, we have

p(b1:tj,ℓ−1|is1:t−1
i,ℓ , o1:ti , a1:t−1

i) = qℓϕ(b
1:t
j,ℓ−1|is1:t−1

i,ℓ , o1:ti , a1:t−1
i).
(3)

Therefore,

wt =
p(is1:ti,ℓ , o

1:t
i |a1:t−1

i)

qℓϕ(is
1:t
i,ℓ |o1:ti , a1:t−1

i)

=

∑
a1:t−1
j

p(s1:t|a1:t−1
i , a1:t−1

j)πj,ℓ−1(a
1:t−1
j |b1:t−1

j,ℓ−1, θj)

qϕ(s1:t|o1:ti , a1:t−1
i)qℓϕ(θj,ℓ|o1:ti , a1:t−1

i)
.

(4)

Implementation Details for Construction
Environment

Planners
We adapt BFS with a set of heuristics for the policies for
both agents. For Alice’s policy, she imagines the resulting

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

state of taking each one of the actions in the action space.
She then estimates the value of that action by assigning
it to be the length of the shortest path from the resulting
state to the block she is missing from her pair (path found
with BFS). Alice then chooses to perform the action with
the maximum utility. Bob similarly transitions to all possi-
ble immediate next states by enumerating over the actions
space. His policy then diverges contingent on whether he is
helping or hindering Alice:

If he is helpful and does not have any items in his in-
ventory, he values a possible next state by the length of the
shortest path to the missing block from the pair he infers
Alice wants to form. If he has a block in his inventory, he
values the next states by the shortest path to Alice.

If he is trying to hinder Alice and has nothing in his in-
ventory, he determines the shortest path to the midpoint of
Alice and the block she would like to move toward. He also
determines the shortest path from his location to the block he
infers Alice wants, as this is consistent with the behavior of
stealing blocks and running away. If he grabs a block, Bob
values the next states by determining how far they move him
away from Alice and toward free space (away from walls
and toward the centers of quadrants on the grid).

Neural Network Architectures
State Representation We represent the state of the con-
struction environment by using multiple channels corre-
sponding to different types of items. We end up with a 3-
dimensional tensor to represent each state, with the dimen-
sions 20×20×24, such that each cell in the 20×20 gridworld
is represented as a one-hot vector. The vector representation
of each cell indicates whether a cell has a wall, is empty
space, is Alice without any blocks selected in her inventory,
is Alice with one of 10 possible blocks in her inventory, is
Bob without any blocks grabbed, or is Bob with one of 10
possible blocks he can grab.

Action Representation We represent the action an agent
takes from a particular state as a one-hot vector associated
with the following actions Up, Down, Left, Right, Put-down,
Stop. An agent grabs a block automatically by moving onto
the cell the block is located without having anything in its
inventory, assuming another agent is not already at that co-
ordinate. Thus, we do not need to explicitly encode this ac-

tion and only need to give an agent the ability to drop items
in its inventory.

State-Action Encoder Module We begin by expanding
the tensor representation of an agent’s action to be the same
dimensions as the state tensor, then concatenate the two.
From there, the state-action pair is encoded into a 128-dim
hidden state by a convolutional layer with 128 channels and
kernels of 1 × 1 with stride 1, and pass this through three
fully connected (FC) layers (128-dim, 256-dim, 128-dim in
order). For all three FC layers, we apply a ReLU activation
function to obtain our final encoded state-action representa-
tion.

State Recognition Network, qϕ(s| · · ·) The state is fully
observable in this environment. So we do not need to train a
state recognition network for this environment.

Level-1 Goal Recognition Network, q1ϕ(θ| · · ·) This net-
work infers the goal of Alice (as a level-0 agent). Every
(state, action) pair within a sequence of Alice’s observed
states and actions is passed through the state-action encoder
described above to obtain a joint vector representation. From
there, we concatenate each joint-vector representation and
pass them through an LSTM with 128 hidden units. Since
this is done for multiple different episodes within a single
batch, we pad all the distinct sequences to have the same
length as the longest rollout in the batch. After concatenat-
ing the padded output for each item in the batch, we pass the
fused tensor through two FC layers of 256-dim and 128-dim
in order, again using ReLU activations on both. Finally, we
apply an FC layer with an output of 45 to the result from
the previous layer and apply a log-softmax activation to this
output. This final vector represents the probability distribu-
tion over all combinations of two blocks Alice might want
to put together as part of its goal. We obtain this proposed
distribution for every time step within an episode and every
episode within a batch.

Level-2 Goal Recognition Network, q2ϕ(θ| · · ·) This net-
work infers the goal of Bob (as a level-1 agent). This was a
nearly identical setup to the Level-1 Goal Recognition Net-
work, with the main difference being the output of the final
layer was of size 2 instead of 45, representing Bob’s ability
to only have 2 goals (helping or hindering Alice). Note that
it has its own state-action encoder, which is not shared with
the Level-2 goal recognition network. Since there are only 2
possible goal hypotheses for Bob, we always enumerate all
2 possible hypotheses instead of sampling top hypotheses
based on the level-1 goal recognition network in the experi-
ment. However, this network would be useful when there is
a larger goal space for the level-1 agent.

Training
Data Generation For training q1ϕ, we initialize a state in
which Alice is spawned at a random cell in the world (with-
out Bob), and the blocks are scattered randomly throughout
the gridworld. Alice is assigned two blocks to put together,
and the walls are consistently bordering the grid. The choice
of block locations and the pair Alice would like to create are

sampled from a uniform distribution. Using the aforemen-
tioned policy, Alice tries to take the shortest path to move her
two desired blocks together before some maximum number
of time steps (40) pass. The state at each timestep and the
action Alice took from there are saved as their aforemen-
tioned tensor representations, as well as a one-hot encoding
representing which of the 45 block pairs Alice would like to
bring together. We store the results of doing exact inference
about Alice’s intentions by enumerating all 45 possibilities,
and this forms the target for q1ϕ. We generate 30,000 episodes
for training.

For training q2ϕ, we follow a similar procedure, except that
we also spawn Bob in a random location that is not occu-
pied by Alice or a block. We also uniformly sample Bob’s
goal (helping or hindering Alice). Bob is assumed to be rea-
soning about which two blocks Alice would like to move
together through our approach with a trained q1ϕ and 5 par-
ticles to enumerate over at each time step. He acts in accor-
dance with his previously described policy, contingent on his
beliefs about Alice’s goals. In this scenario, we save Bob’s
actions from each state, and a one-hot representation of his
social intention from the set helping, hindering. We store
the results of doing exact inference about Bob’s intentions
by enumerating the 2 possibilities, and this forms the target
for q2ϕ. We generate 1020 episodes to train the level-2 goal
recognition network.

Loss ans Hyperparameter Specification Goal recogni-
tion networks are trained with KL divergence loss as defined
in the main paper. For all networks, we use the Adam opti-
mizer and a learning rate of 0.0001. We found the best re-
sults using a batch size of 128. All networks are trained on a
single GPU.

Hypothesis Sampling
Sampling Hypotheses From Goal Recognition Networks.
We rank the hypotheses based on their probabilities in qlϕ
and select the top hypotheses as the sampling result. This
ensures that the top hypotheses will always be considered in
the inference.

ToMnet Baseline
The neural network baseline for goal inference modeled af-
ter ToMnet has the same architecture as the level-2 goal
recognition network. However, it is trained with cross-
entropy loss based on the ground-truth goals. We used the
same learning rate and batch size as the q1ϕ and q2ϕ networks.

Implementation Details for Driving
Environment

Planners
All drivers rely on a hierarchical planner. The high-level
planner decides whether to move along the optimal path,
stop, or signal danger at each step (i.e., a subgoal). Note
that the level-0 drivers will not consider signaling danger
as they do not model other drivers. Based on the inference
of other drivers, it will stop if it anticipates collision with
other drivers at any point in the future 10 steps; it will signal

danger if it infers that another driver is not aware of a car
and is about to collide with that car; otherwise, it will move
along the optimal path. For the low-level plan, we search for
the shortest path for the “moving along” subgoal; the low-
level plan for “stop” is selecting the “brake” action; and the
low-level plan for “signal danger” is selecting the “signal
danger” action.

For the path planner, specifically, if a car is next to a set
of walls, it moves forward. If it does not have any walls in
front of it or at its side (meaning it has entered the inter-
section), it begins turning in the direction of its goal. Note
that for the actions, “accelerate”, “brake,” “rotate left,” and
“rotate right,” we implement built-in motion control to exe-
cute them in the environment. Therefore we do not need to
consider motion planning for the drivers. In particular, the
“brake” action immediately stops the car from moving, and
the “accelerate” action immediately accelerates the car to a
constant speed.

Simulating Inattentive Drivers
We model inattentive drivers as drivers with a small field of
view and poor forward projection capabilities. Specifically,
we implement inattentive drivers as level-1 drivers who have
45 degrees of view, no chance of signaling for danger, and
only look one step into the future. This contrasts with normal
drivers who have 135 degrees of view, will consider other
drivers’ beliefs for “signal danger” actions, and will look 10
steps into the future.

Neural Network Architectures
Belief State Representation We sample each driver’s ini-
tial location uniformly from a set of 16 possible locations at
an intersection as shown in Figure 1. We used a single 145-
dim vector to represent the state, concatenating information
about each driver’s (existence, x coordinate, y coordinate,
heading angle, one-hot vector for its previous action). If a
driver’s existence was given a value of 0, the other telemetry
data points relevant to that vehicle were also given values
of 0. The one-hot action representation is described below.
The final element in the vector is the current time step of the
world.

Action Representation We represent an action as a one-
hot vector over the action space {Accelerate, Rotate Left,
Rotate Right, Brake, Signal}

Inference Pair Representation This is a 2-dim vector, in-
dicating two drivers’ IDs, i and j. i is inferring j (as a lower-
level driver) in this pair.

Belief State Encoding Module We decrease the size of
the Belief State tensor by passing the Belief State through 5
fully connected (FC) layers (size 32, 64, 64, 32, 16 in order).
Each layer uses ReLU activations.

Inference Pair Encoding Module We increase the size of
the Inference Pair tensor by passing it through 3 FC layers
(size 32, 32, 64 in order). Again, each layer uses ReLU acti-
vations.

State Recognition Network, qϕ(s| · · ·) This network in-
fers the state of the world from a car’s perspective (as a level-
0 driver). Every (state, action) pair within a sequence of Al-
ice’s observed states and actions is represented as a Belief
state tensor as described above and passed through the Be-
lief State encoder to obtain a smaller vector representation.
We then split the training about the beliefs of a driver into
two networks: one for determining whether a driver exists
in the world and one for determining the telemetry data for
each driver. For the telemetry data network, we pass each
vector through an LSTM with 16 hidden units. Since this is
done for multiple different episodes within a single batch,
we pad all the distinct sequences to have the same length
as the longest rollout in the batch. After concatenating the
padded output for each item in the batch, we pass the fused
tensor through four FC layers of 32-dim, 64-dim, 32-dim,
and 48-dim in order, again using ReLU activations on both.
This final vector represents the x-coordinate, y-coordinate,
and speed of each car within a state at a single time step.
We obtain this predicted telemetry data for every time step
within an episode and every episode within a batch. The
network that proposes a driver’s belief about the existence
of other cars in the world has the same LSTM structure as
the telemetry prediction network, but it passes the output
through three FC layers of sizes 16, 32, and 32 in order.
The first two of these FC layers utilize ReLU activations.
The output of the final layer represents the (probability of a
car not existing, the probability of a car existing) for each
of the potential 16 vehicles. We reshape the 32-dim vector
into a 16 × 2 tensor, then perform a log softmax activation
on the second dimension. Again, we obtain this output for
every time step for every episode within a batch.

Level-1 Goal Recognition Network, q1ϕ(θ| · · ·) This net-
work infers the goal of a specific car (as a level-0 driver)
from another’s perspective. Every (state, action) pair within
a sequence of the inferring car’s observed states and actions
is passed through the Belief State encoder described above.
We also pass the IDs of the reasoning car and its target as
an Inference Pair tensor into the Inference Pair Encoding
module described above. We concatenate the outputs of both
of these encoders to develop a joint-vector representation of
the task. From there, we concatenate each joint-vector rep-
resentation and pass them through an LSTM with 128 hid-
den units. Since this is done for multiple different episodes
within a single batch, we pad all the distinct sequences to
have the same length as the longest rollout in the batch. After
concatenating the padded output for each item in the batch,
we pass the fused tensor through two FC layers of 256-dim
and 128-dim in order, again using ReLU activations on both.
Finally, we apply an FC layer with an output of 3 to the result
from the previous layer and apply a log-softmax activation to
this output. This final vector represents the probability dis-
tribution over all directions the target car might want to turn
in to accomplish its goal. We obtain this proposed distribu-
tion for every time step within an episode and every episode
within a batch.

Level-2 Goal Recognition Network, q2ϕ(θ| · · ·) This net-
work infers the goal of one car (as a level-1 driver) from an-

1,2 2,2

1,1 2,1

5,1 6,1

5,2 6,2

3,1 3,2

4,1 4,2

7,2 7,1

8,2 8,1

Figure 1: Indices of each car represented in a driver’s belief
in Driving.

other’s perspective. This was an identical setup to the Level-
1 Goal Recognition Network, with the main difference be-
ing the input would include a slightly larger effective actions
space (since level-1 cars are capable of signaling danger).
Note that it has its own Belief State State and Inference Pair
encoders, which are not shared with the Level-1 goal recog-
nition network.

Training
Belief Representation and Sampling For each driver’s
belief, we represent the world state as the states of the cars
in all 8 lanes. As introduced in the main paper, for the k-th
lane, we model up to 2 cars that are closest to the intersec-
tion m ∈ {1, 2}, as shown in Figure 1. The indices of cars,
m, are ordered by their distances to the intersection. k,m
indicates whether a car m exists in the k-th lane.

For each driver’s belief, we sample the existence and
telemetry data for all unobserved cars as follows:

1. If a car is important to the driver’s turning objective,
but not visible, its existence is sampled from a prior of
p(existence = 1) = 0.65. We assume that the car is
at the location within the blind spot that is closest to the
driver and it is moving forward at a default speed.

2. For unobserved and unimportant cars, we assume that
they do not exist (i.e., the driver will ignore them).

A sampled belief state is processed into the aforementioned
state tensor representation. The importance of a car is deter-
mined by the following heuristics:

1. If a driver is turning left, the driver needs to make sure
that no car is crossing the street perpendicular to the
driver’s current lane, and that no cars traveling parallel
to the driver’s current lane in the opposite direction.

2. If a driver is turning right, the driver needs to make sure
that no car is crossing the street perpendicular to the right

lane the driver wants to turn into, and that no car is turn-
ing left into the lane the driver wants to turn right into.

3. If a driver is moving forward, the driver needs to make
sure that no car is crossing the street perpendicular to the
driver’s current lane and that no car in the lane parallel
to the driver but on a separate side of the street is turning
left.

This means that we need to only consider up to 3 lanes and
we only would consider the first car that can potentially ex-
ist in the blind spot in one of these 3 lanes. At any moment,
there are at most 3 relevant vehicles that a driver cannot see
which it needs to form a belief over. For each of the 3 ve-
hicles, we must sample whether it exists or not. Therefore,
we need at most 8 particles to include all hypotheses about
the state. These heuristics can be replaced with learned at-
tention mechanisms for deciding which cars are significant
to one’s planning process, which we intend to investigate in
the future.

Data Generation For training qϕ, we initialize a state in
which a car is spawned randomly in one of 16 possible loca-
tions, and its goal of moving forward or turning left/right
is sampled from a uniform distribution. Buildings on ei-
ther side of the car’s initial location inhibit its vision of the
world, rendering this a standard POMDP. We constrain each
episode to a maximum number of time steps (30). 2 more
drivers independently acting in the world are also gener-
ated randomly in the world, and their goals are sampled uni-
formly from the goal space. The state at each time step and
the action the driver took from there are saved as their afore-
mentioned tensor representations. We also save the ground
truth belief a driver forms about the physical state of the
world. At this level, drivers move by only being concerned
with whether or not they will personally crash, and trying
to navigate toward their goals accordingly. If any car in the
world crashes, the episode terminates.

For training q1ϕ, we follow a similar procedure. Each car
is assumed to be reasoning about the state of the world with
a trained qϕ and 1 particle for the inferred physical state out
of 8 potential options to enumerate over at each time step.
They then try to take the best actions to avoid crashing into
each other while completing their objective. Once a rollout
terminates, we have a model perform exact inference over
some car B’s intentions from the perspective of another car
A. This produces a tensor which is (T × 3), where T is the
number of time steps in a rollout and the vector for each time
is the probability of B wanting to move forward, left, or right
from A’s perspective.

Training q2ϕ is a similar process as before, but each driver
is now assumed to be reasoning at level-1 through the use of
our approach and the trained q1ϕ and qϕ networks. The policy
for these level-1 drivers is described in prior sections. In this
scenario, we save each car’s actions from each state, the ten-
sor representation of each car’s inference pair as aforemen-
tioned, and the results of doing exact inference at level-2,
while performing our approach using q1ϕ and qϕ at level-1.

At level-2 inference, the exact inference over the entire
hypothesis space would require 72 hypotheses: (3 parti-
cles to cover all level-2 goal hypotheses) × (3 particles to

cover all level-1 goal hypotheses) × (8 particles to cover all
level-0 state belief hypotheses) = 72 total particles.

We generate 6,000 episodes at random for each of the
datasets used to train qϕ and q1ϕ, and q2ϕ.

Loss and Hyperparameter Specification The telemetry
prediction network that is part of qϕ was trained using the
MSE loss between its proposed telemetry values for each
driver and the ground truth information stored within our
beliefs. The driver existence prediction network is trained to
minimize the KL divergence loss between its proposed dis-
tribution and the ground truth distribution based on a driver’s
observations and its prior. Both of these models performed
best with a batch size of 32 and a learning rate of 0.001, us-
ing the Adam optimizer. The goal recognition networks are
trained using the KL divergence loss between its proposed
distribution and the ground truth distribution based on exact
inference. We use the Adam optimizer and a learning rate
of 0.0001 for both goal recognition networks. We found the
best results using a batch size of 64. All networks are trained
on a single GPU.

Hypothesis Sampling
Sampling Hypotheses From Goal Recognition Networks.
We rank the hypotheses based on their probabilities in qlϕ
and select the top hypotheses as the sampling result. This
ensures that the top hypotheses will always be considered in
the inference.

Sampling Hypotheses From State Recognition Networks.
Given the probability of existence that our recognition net-
work assigns to each potential car, we sample whether that
car will exist in our belief about the physical world and as-
sign it its corresponding telemetry data.

ToMnet Baseline
The neural network baseline for action prediction modeled
after ToMnet has the same architecture as the level-2 goal
recognition network, but has an output size of T × 5 in-
stead, to represent the 5 possible actions a driver can take.
It is trained with cross-entropy loss based on the ground-
truth actions at the next time step from any given state and
relies on the same dataset used to train q2ϕ. We used the same
batch size of 64 as the q2ϕ model, but a lower learning rate
of 0.00001, since this yielded a higher test accuracy for the
baseline.

Additional Qualitative Results
Construction Environment
Figure 2 and Figure 3 show our method’s inference on two
more examples in Construction.

Driving Environment
In Figure 4, we examine a specific frame (step 1) within
a Driving scenario involving 3 cars controlled by normal
drivers. We visualize the nested reasoning by our model that
leads to the correct prediction that the green car will signal
danger.

Because this scene occurs early in an episode and the
green car has not reached the intersection, its previous ac-
tion of accelerating is consistent with all 3 possible goals.
This is reflected in a uniform distribution over θgreen at the
highest level when we use 3 particles (level-2 inference).

Going down one level, at level-1 inference, based on the
inferred belief, the green car believes that there could be
two cars in its blind spots, i.e., the purple and orange cars
on the middle level in Figure 4. At this level, we also infer
how green infers the goals of the red car and the blue car, as
shown in the corresponding distributions over θred and θblue
in Figure 4. We use 2 particles for the level-1 inference. For
the blue car, two goals are sampled: moving forward or turn-
ing left. These two goals are equally possible since there is
little observation at this moment. There is a confident goal
prediction for the red car as the red car has rotated left, which
strongly indicates the goal of turning left.

If we look at the leaves of the tree (level-0 reasoning), we
can get a better understanding of why the model predicts that
the green car will signal danger. In the green car’s mind, the
red car may be unaware of other cars, as the red car cannot
see other cars. Moreover, the green car infers that the blue
car may be also unaware of the red car. Coupled with the in-
ferred goals of the red car and the blue car, our model infers
that the green car may predict a potential collision between
the red car and the blue car. Therefore, our model predicts
that the green car will signal danger.

Our approach generates similar ”inference trees” at every
time step. With the use of neural amortized inference, we
only need to sample a small tree to conduct the inference
accurately. This demonstrates that our approach is both in-
terpretable and efficient.

(a)

(b)

(c)

 (d)

a b c d

Alice Bob
Hinder GT Goals

Online inference of Bob’s goal

Keyframes
e

Figure 2: Online goal inference of our method (with 10 particles) in a typical episode in Construction, in which Alice wants
to put brown and green blocks together and Bob tries to hinder Alice. The plot on the top shows the posterior probabilities
of the two hypotheses based on our method’s inference at any given time step. The keyframes on the bottom explain why our
method adjusts its inference. The arrows in the frames show the trajectories of the agents. Initially, the model is uncertain (a).
(b) As Bob begins to move toward Alice to intercept her rather than toward other blocks, our model starts to make a confident
prediction that Bob is hindering. (c) Over time, our model maintains this prediction as Bob continues to exhibit hindering
behavior. (d) The inference becomes uncertain at this moment as Bob moves very close to the block Alice wants (the green)
after she has picked up the brown block, which could be either helping or hindering. (e) The inference becomes confident again
when Bob moves to intercept Alice along her path to the green block and prevent her from completing her task.

(a)

(b)

(c) (d)

(e)

a b c d

Alice Bob
Help GT Goals

Online inference of Bob’s goal

Keyframes
e

Figure 3: Online goal inference of our method (with 10 particles) in a typical episode in Construction, in which Alice wants to
put green and magenta blocks together and Bob tries to help Alice. The plot on the top shows the posterior probabilities of the
two hypotheses based on our method’s inference at any given time step. The keyframes on the bottom explain why our method
adjusts its inference. Note that the arrows in the frames show the trajectories of the agents. (a) our model is initially uncertain
about Bob’s goal. By (b), however, the model believes that Bob is likely to be helping since he has never tried to sabotage Alice
once. (c) the model infers that hindering is slightly more likely since Bob’s behavior could be interpreted as trying to block
Alice or trying to grab the 2nd block before Alice can. However, by (d) the inference switches back to favoring helping as Bob
grabs the block missing from Alice’s pair and moves toward her, helping her complete her goal faster. (e) The slight dip in
confidence at the end reflects Bob putting down the block, which can be confusing if he is doing this to allow Alice to pick up
that block or so that he can hinder her by grabbing the other block from her and running away.

3rd-person
POV,
inferring
green

s 𝛳

P(Left): 0.33

P(Right): 0.33

P(Forward): 0.33 Green’s mind inferred
by 3rd person

𝛳

P(Left): 1.0

P(Right): 0

P(Forward): 0

𝛳

P(Left): 0.5

P(Right): 0

P(Forward): 0.5

Red’s mind inferred
by Green

Blue’s mind inferred
by Green

s

𝛳 𝛳

s s

P(s) = 0.96 P(s) = 0.45

…

…

…

…

…

…

Figure 4: The shortened tree representation of nested inference done by our model’s inference about the green driver’s mind at
time step 1 using 6 particles. Though uncertain about the green car’s goals early on in the episode, our model correctly predicts
that it will signal danger, as the leaves of the tree indicate that the green car does not believe that the blue or red cars can
see each other and will consequently crash. The corresponding action probabilities our model proposes for the green car are
depicted in the top right of this figure.

