
Supplementary Materials
PHASE: PHysically-grounded Abstract Social Events for Machine Social

Perception

Aviv Netanyahu* Tianmin Shu* Boris Katz Andrei Barbu Joshua B. Tenenbaum
{avivn, tshu, boris, abarbu, jbt}@mit.edu

Massachusetts Institute of Technology, Cambridge, MA 02139

Method Goal Relation
Top-1 Top-2 Top-3

SIMPLE (Initial) 0.795 0.825 0.835 0.82
SIMPLE (Global) 0.835 0.865 0.880 0.84
SIMPLE (Full) 0.870 0.890 0.910 0.88

Table 1: Ablation study on the effect of proposal updates
based on local estimation for Task 1. The evaluation is us-
ing the test set of PHASE. Initial, Global, and Full repre-
sent SIMPLE with only the initial proposals, SIMPLE using
global estimation for updating the proposals, and SIMPLE
as proposed in Algorithm 2.

Additional Experimental Results
Ablation Study (Evaluation on PHASE)
To evaluate the effect of the proposal update based on loca-
tion estimation in SIMPLE, we compare the full approach
with (i) a variant without proposal update, and (ii) a vari-
ant with update based on the complete trajectories instead of
location estimation (also with 6 iterations). We report the
performance for Task 1 on the test set of PHASE in Ta-
ble 1. The results demonstrate that local estimation indeed
can help find better proposals through a handful of iterations.

Details of Joint Physical-Social Simulation
Our joint physical-social simulation is described in Algo-
rithm 1, which includes a physical simulation T , and a hier-
archical planner which consists of a high-level planner (HP)
and a low-level planner (LP). Given the scene configuration,
the simulation updates the belief particles based on new ob-
servations, uses the hierarchical planner to sample actions
for all agents based on the updated particles, feeds the ac-
tions to the physics engine to simulate one step, and renders
5 frames of video based on the simulated physical states.
The final video has a frame rate of 20 FPS. We discuss more
implementation details as follows.

Predicates, Symbolic States, Goals, and Subgoals
In our simulation, we define a set of predicates as summa-
rized in Table 2. These predicates and their negations are

*Equal contribution.

Algorithm 1: Joint Physical-Social Simulation

Input: g1, g2, α12, α21, f1, f2, and initial state s1

Output: Abstract social event s1:T

for agent i = 1, · · · , 2 do
Initialize belief particles {b0i,k}Kk=1 ;

end
for time steps t = 1, · · · , T do

for agent i = 1, · · · , 2 do
Update observation oti;
Update belief particles {bti,k}Kk=1 based on oti;
Set the other agent j ← {1, 2} \ {i};
for each particle k = 1, · · · ,K do

Get subgoal hti,k ← HP(gi, gj , αij , bti,k);
end
for subgoal h ∈ H do

Esitmate value V (Bti , h, gi, gj , αij) =
1
K

∑K
k=1 1(h = hti,k)−
λ∑K

k=1 1(h=hti,k)

∑K
k=1 1(h = hti,k)Ĉ(bti,k, sg);

end
Select subgoal
hti,∗ = arg maxh V (Bti , h, gi, gj , αij);

Get belief particles B̃ti that correspond to hti,∗;
Get action ati ← LP(B̃ti , hti,∗);

end
Update state st+1 ← T (st, {ati}2i=1, {fi}2i=1);

end

used to (i) convert a physical state into a symbolic state, and
also (ii) become a subgoal space that our hierarchical plan-
ner considers for the high-level plans.

Furthermore, the final goal states for physical goals
and social goals of agents are also represented by a sub-
set of these predicates, i.e., ON(agent/object, landmark),
TOUCH(agent, agent), and their negations.

Hierarchical Planner
For the high-level planner we use A∗ to search for a plan of
subgoals forN = 2 agents based onK = 50 belief particles.

Predicate Definition
ON(agent/object, landmark) An entity is on a landmark
TOUCH(agent, agent/object) An agent touches another entity

ATTACH(agent, object) An object is attached to an agent’s body
CLOSE(agent/object, agent/object/landmark) An entity is within a certain distance away from another entity or a landmark

Table 2: Predicates and their definitions. Note that we also consider their negations, which are not shown in the table for brevity.

A

B

1 2 3 4 5 6 7

8 9 10 11 12 13 14

1 2 3 4 5 6 7

Figure 1: Illustration of the effect of estimated value function for the high-level planner. The numbers indicate temporal order of
the frames. In both sequences, the green agent’s goal is to move the blue object to the red landmark in the bottom-right corner.
Since it does not see the blue object initially, it needs to first find the object. (A) The sequence when λ = 0. since there is more
unseen space in the left part of the environment, it is more likely that the blue object is in the left part. So the green agent first
searches the left part when not considering the cost of doing so. (B) The sequence when λ = 0.05. When considering the cost,
it is worthwhile for the green agent to search the nearby region first. The chance of finding the blue object there is slightly lower
than the left region, but the resulting cost is considerably lower. In particular, it first looks around (frame #2) and then proceeds
to search the upper-right part (frame #3 and #4). This comparison demonstrates that an appropriate λ could give us more natural
agent behaviors under partial observability.

To ensure a subgoal selection for simulating natural
agent behavior without expensive computation, we design
a heuristics-based value estimation V (Bti , h, gi, gj , αij) for
each subgoal as shown in Algorithm 1. This value function
favors subgoals that are more likely to be the best subgoal
in the true state (i.e., high frequency subgoals generated by
all belief particles) and have lower cost (i.e., Ĉ estimated by
the distance from the current state to the final goal state ac-
cording to a given belief particle). By changing the weight
λ, we are able to alter the agent’s behavior. Figure 1 demon-
strates an example of how λ affects the agent’s behavior. In
practice, we find λ = 0.05 offers a good balance and can
consistently generate natural behaviors.

For the low-level action planner, we use POMCP (Sil-
ver and Veness 2010) with 1000 simulations and 10 roll-
out steps. For exploration in POMCP, we adopt a variant of
PUCT algorithm introduced in Silver et al. (2018), where we
use cinit = 1.25 and cbase = 1000.

Belief Representation and Update
Each agent’s belief is represented byK = 50 particles in the
simulation. Each particle represents a possible world state
that is consistent with the observations. The state in a parti-
cle includes the environment layout, and physical properties
of each entity — shape, size, center position, orientation of
the body, linear and angular velocity, and attached entities.

Each particle is updated with the ground truth properties
of observed entities: the agent itself, other entities in its field
of view (approximated by 1 × 1 grid cells on the map) or
entities in contact with the agent. Entities that are in contact
with observed entities are also defined as observed.1 Contact
occurs when entities are attached or collide, and is signaled
by agents’ touch sensory.

Unobserved entity properties differ between particles. We
start by randomly sampling possible initial positions from

1This is to ensure that the agent knows (i) whether there is any
other agent grabbing the same object it is currently grabbing, and
(ii) whether an observed agent is grabbing any object.

Figure 2: Illustration of how the red agent updates its belief
using K = 10 particles. (A) True states st (top) and st+1

(bottom). The bright pixels indicate the red agent’s field of
view. (B) {btred,k}Kk=1 (top) and {bt+1

red,k}Kk=1 (bottom). The
states in all the particles are visualized together. At step t+1
the red agent observes the blue object via its field of view.
All particles are then updated accordingly with the ground
truth properties of the blue object, and the inconsistent be-
lief states are also resampled. (C) The state in one of the
belief particles, btred,k (top) and bt+1

red,k (bottom). The particle
is updated with ground truth properties blue object at step
t+ 1. The properties of the pink object are resampled at step
t + 1 since its believed position in step t conflicts with the
observation at step t+ 1.

the 2D environment and setting other properties (orientation
and velocity) to 0. To update a belief particle from t to t+ 1,
we first apply the physics engine to simulate one step, where
we assume constant motion for entities. Then we check the
consistency between the simulated state at t+ 1 and the ac-
tual observation at t + 1. For entities that contradict the ob-
servation, we resample their positions and orientations. We
then repeat the consistency check and resampling until there
is no conflict.

Figure 2 depicts an example of how an agent updates its
belief from step t to step t + 1 based on its observation at
step t+ 1.

More Example Events in PHASE

We show more example events in PHASE in the supplemen-
tary video.

Details of SIMPLE

We provide a sketch of SIMPLE in Algorithm 2,
where G(·) is our simulation, P (tl,m|ŝ1:T

l,m, s
1:T , η) ∝

e
η
∑tl,m+∆T

τ=tl,m
||ŝτl,m−s

τ ||2 . For all experiments, we set L = 6,
M = 15, η = 0.1, β = 0.05, and ∆T = 10.

Based on the final proposals and their weights, we can
define posterior probability of the relationship between two
agents as follows (F, A, N indicates friendly, adversarial, and

Algorithm 2: Sketch of SIMPLE

Input: s1:T , L, M , η, β, ∆T
Output: {YL,m}Mm=1 and their weights {wL,m}Mm=1
for m = 1, · · · ,M do

Initial proposal Y0,m ∼ Q(Y0,m|S1”T);
Synthesize trajectories ŝ1:T

l,m ← G(Y0,m);

w0,m =
P (s1:T |Y0,m)∑M
k=1 P (s1:T |Y0,k)

;

end
for l = 0, · · · , L− 1 do

for m = 1, · · · ,M do
Sample a step tl,m ∼ P (tl,m|ŝ1:T

l,m, s
1:T , η);

Set S′ = stl,m:tl,m+∆T ;
Sample a new proposal Y ′ ∼ Q(Yl+1,m|S′);
Synthesize trajectories ŝ1:T

l+1,m ← G(Y ′);

α = min{1, Q(Y ′|S′)P (s1:T |Y ′)
Q(Yl,m|S′)P (s1:T |Yl,m)

};
Sample u ∼ Uniform(0, 1);
If u < α, Yl+1,m ← Y ′, otherwise
Yl+1,m ← Yl,m;

wl+1,m =
P (s1:T |Yl+1,m)∑M
k=1 P (s1:T |Yl+1,k)

;

end
end

neutral respectively):

P (F|s1:T) = P (αij > 0 or αji > 0|s1:T)
+P (gi = gj |s1:T)
·P (αij = 0, αji = 0|s1:T),

(1)

P (A|s1:T) = P (αij < 0 or αji < 0|s1:T)
+P (conflicting gi&gj |s1:T)
·P (αij = 0, αji|s1:T),

(2)

and
P (N|s1:T) = 1− P (F|s1:T)− P (A|s1:T), (3)

where conflicting gi and gj include two types of scenarios:
(i) two agents have the goal of putting the same object on dif-
ferent landmarks, and (ii) agent i has the goal of approaching
agent j while agent j has the goal of avoiding agent i.

Bottom-up Proposals
We devise a bottom-up proposal based on heuristics ex-
tracted from observed trajectories within a time interval
St1:t2 , i.e., Y ∼ Q(Y |St1:t2). In this work, the proposal dis-
tribution is decomposed into separate terms for proposing
goals (gi, gj), social utility weights (αij , αji), and strengths
(fi, fj) respectively, i.e.,

Q(Y |St1:t2) = Q(gi|St1:t2)Q(gj |St1:t2)
·Q(αij , αji|St1:t2)
·Q(fi|St1:t2)Q(fj |St1:t2).

(4)

We define the goal proposal distribution for an agent by

Q(g|St1:t2) ∝ eγ||s
t2
i −sg||2eγ(||st2i −sg||2−|s

t1
i −sg||2)

∝ eγ(2||st2i −sg||2−|s
t1
i −sg||2),

(5)

where γ = 10 is a constant weight. Intuitively, if the tra-
jectories have demonstrated either achievement at the end
of the period (t2) or progress towards a goal during the pe-
riod (from t1 to t2), then that goal is likely to be the true
goal. For the social utility weights, we first randomly select
u ∈ {−1, 0, 1}. If u = 0, we set both αij and αji to be zero;
if u ∈ {−1, 1}, we randomly select either αij or αji, and set
it to be uwhile setting the other one to be zero. This is essen-
tially assuming that there will be at most one agent pursuing
a social goal in a social event. For the strengths, we train
a 2-layer MLP (64-dim for each layer) using training data
in PHASE to estimate the maximum forces that agents can
exert.

Additional Details of Human Experiments
Experiment 1
The 23 labels used in this experiment are: not interacting,
interacting unintentionally, chasing, running away, stalking,
approaching, avoiding, meeting, gathering together, guiding,
following the lead (of another agent), playing a game of tag,
blocking, fighting, competing, stealing, protecting an object,
attacking, hindering, bullying, playing tug of war, helping,
collaborating.

Experiment 2
The online game procedure is similar to the setup in PHASE,
except that actions are obtained from user input. In each
game, there are two players, one for controlling each agent.
The players view the environment from separate screens (via
different URLs), updated with each agent’s observations.
Players can use the following actions by pressing keys on
their keyboards: 4 directions (forward, backward, right, left),
turning right or left , and grabbing or letting go of an ob-
ject. We reset the velocity of each agent to 0 after each step
to make it easier for players to control the agents. Before
each session, the players were shown a tutorial on how the
agents work (partial observability and the controls). They
were given an opportunity to play freely in the game envi-
ronment to get familiar with the controls. At the beginning of
a session, they were told the goals assigned to both players
(so they knew each others’ goals) and asked to start playing
the game to achieve the assigned goals. Each session ended
either until the goals of both players were achieved or until
the time limit was reached.

Baseline Implementation
For all neural nets, we construct the inputs as a sequence
of states of multiple nodes. In particular, a node could be
an entity, a landmark, or a wall. For a node, the input at a
step includes a 4-dim one-hot vector for type (agent, object,
landmark, or wall), color (which also indicates the identity
of each entity), size, position, orientation, and velocity. We
provide implementation details of each baseline as follows.

2-Level LSTM: We replace the CNN-based visual fea-
tures in Ibrahim et al. (2016) by node embeddings. Specifi-
cally, we encode each node using a 64-dim fully-connected
layer followed by an LSTM (64-dim) to get its embedding.
For agent nodes, their node embeddings are fed to a 3-layer

MLP (64-dim for each layer) and then a softmax layout for
goal recognition. After a max pooling over all nodes’ em-
beddings, we get a context feature, which is fed to another
LSTM (64-dim) followed by a fully-connect layer and a
softmax layer for relation recognition.

ARG: We use the same node embedding approach intro-
duced above. Following the best performing architecture in
Wu et al. (2019), we construct a fully-connected graph us-
ing dot-product for the appearance relation. We use a fully-
connected graph here since the number of nodes is small and
the entities are generally not far from each other. The indi-
vidual action classifier for each agent node (3-layer MLP
with 64-dim for each layer) and the group activity classier
(3-layer MLP with 64-dim for each layer) are redefined to
recognize agents’ goals and relation respectively. We use 10
frames from a video to build the temporal graphs. During
training, we randomly select 10 frames; for testing, we use
a sliding window, and mean-pool the responses to compute
the global judgment of the whole video.

Both 2-Level LSTM and ARG are trained using a cross-
entropy loss on goal and relation labels. We use Adam
(Kingma and Ba 2014) with a learning rate of 0.001 and a
batch size of 8.

Social-LSTM: We adopt the same architecture as in Alahi
et al. (2016) except that for every step, it outputs a 10-step
prediction for each entity node. This is to solve our online
prediction task.

STSAT: We use the same architecture as in Huang et al.
(2019) for the encoder components. Similarly to the adap-
tion of Social-LSTM, the decoder LSTM outputs a 10-step
prediction for each entity at each step as well.

We adopt L2 distance between the prediction and the
ground-truth as loss to train the two trajectory prediction
baselines. For network optimization, we use Adam with a
learning rate of 0.01 and a batch size of 8.

References
Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-
Fei, L.; and Savarese, S. 2016. Social lstm: Human trajec-
tory prediction in crowded spaces. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 961–971.

Huang, Y.; Bi, H.; Li, Z.; Mao, T.; and Wang, Z. 2019. Stgat:
Modeling spatial-temporal interactions for human trajectory
prediction. In Proceedings of the IEEE International Con-
ference on Computer Vision, 6272–6281.

Ibrahim, M. S.; Muralidharan, S.; Deng, Z.; Vahdat, A.; and
Mori, G. 2016. A hierarchical deep temporal model for
group activity recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 1971–
1980.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980 .

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm

that masters chess, shogi, and Go through self-play. Science
362(6419): 1140–1144.
Silver, D.; and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In Advances in neural information process-
ing systems, 2164–2172.
Wu, J.; Wang, L.; Wang, L.; Guo, J.; and Wu, G. 2019.
Learning actor relation graphs for group activity recognition.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 9964–9974.

