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Abstract

People make fast, spontaneous, and consistent judgements
of social situations, even in complex physical contexts with
multiple-body dynamics (e.g. pushing, lifting, carrying, etc.).
What mental computations make such judgments possible? Do
people rely on low-level perceptual cues, or on abstract con-
cepts of agency, action, and force? We describe a new exper-
imental paradigm, Flatland, for studying social inference in
physical environments, using automatically generated interac-
tive scenarios. We show that human interpretations of events in
Flatland can be explained by a computational model that com-
bines inverse hierarchical planning with a physical simulation
engine to reason about objects and agents. This model out-
performs cue-based alternatives based on hand-coded (multi-
nomial logistic regression) and learned (LSTM) features. Our
results suggest that humans could use a combination of intu-
itive physics and hierarchical planning to interpret complex in-
teractive scenarios encountered in daily life.

Keywords: social perception; theory of mind; intuitive
physics; Bayesian inverse planning; hierarchical planning

Introduction

We can easily read the intentions of others in their phys-
ical actions. As Oliver Wendell Holmes famously put it,
“Even a dog knows the difference between being stumbled
over and being kicked.” This ease belies the understanding
of physics and psychology necessary to tell the difference.
More broadly, when seeing others engage in social-physical
interactions (e.g. watching a soccer game) we make intuitive,
fast and consistent inferences about their actions from brief
observations, and without evaluative feedback. What mental
mechanisms support such multi-modal and varied inference?

On one hand, the speed of social attribution suggests that it
may be driven by low-level perceptual cues, such as facial ap-
pearance (Todorov et al.,|2005; | Ambady & Rosenthall, [1993)),
or motion (van Buren et al.| 2017; |Shu et al., 2018)). Yet, its
richness suggests a reliance on theory of mind (ToM), or in-
terpreting actions of others by joint inference over incentives,
abilities and goals (Gelman et al.,{1995; [Hamlin et al., 2013)).
Reasoning about physical events has likewise been studied in
terms of perceptual cues (e.g.timing (Michotte, 1963) and ve-
locity (Gilden & Proffitt, |[1989)), and as driven by mentally
simulating the physical world, or intuitive physics (Forbus|
2019; Battaglia et al., 2013).

Physical and social inferences are traditionally studied by
separate empirical paradigms, since they seem to rely on dif-
ferent systems of knowledge (Carey, 2000), and engage dif-
ferent neuro-cognitive domains (Fischer et al., 20165 Sliwa &
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Figure 1: (A) Examples of real-life social interactions in physi-
cal environments: a goalkeeper blocking a shot from an opponent;
two persons carrying a couch. (B) The classic Heider-Simmel an-
imation abstracts such real-life interactions in animated displays of
simple geometric shapes. (C) Flatland captures social scenarios,
and their physical dynamics, in a controlled, procedurally generated
environment. In this example subjects see three interacting circles,
which represent agents and objects of different mass and size. Col-
ored squares indicate landmarks (possible goal locations), and walls
are shown by black lines. Agents and objects cannot move through
walls. An agent’s goal may be, for example, to move an object to a
specific landmark. Agents may have relationships with other agents,
expressed as goals of helping or hindering the other.

Freiwald, 2017). However, in daily life both types of attribu-
tions interact, with the interpretations of one domain relying
on the understanding of the other. For example, in the clas-
sic (Heider & Simmell [1944) experiment, the subjects’ nar-
ratives illustrate both an understanding of the physical world,
and of social relations and goals, such as: “The triangle is
frustrated that he cannot harm the circle,”. Any internal men-
tal representation capable of accurately interpreting the nature
of such multi-modal social interactions must integrate physi-
cal and social representations. This integration is necessary to
differentiate between animate and physical events, and to see
agents simultaneously as objects, targets of physical actions,
and as agents, enacting their goals.

In this work we study the mechanisms of social inferences
in dynamical physical scenes by introducing a new experi-
mental paradigm, Flatland, inspired by Heider-Simmel ani-
mations. Several computational and quantitative studies have
examined social interactions and attributions in grid-world
environments (e.g. Baker et al.l [2017; Kryven et al.| 2016;
Jara-Ettinger et al., 2015} Rabinowitz et al., 2018). Flatland
extends these studies to a continuous physical domain, closer
to the original Heider-Simmel study, but with more control
over procedural stimulus generation and ground truth. Our
methodology also builds on [Shu et al.| (2019), which used



deep reinforcement learning to generate simple social inter-
actions in a 2D physics engine.

Flatland allows for a variety of goals, agent-to-agent re-
lations, and physical properties of agents and objects (see
Figure [T]A). We interpret human attributions of goals, rela-
tions, and physical properties in this domain by a computa-
tional model that combines a hierarchical planner (based on
Kaelbling & Lozano-Pérez, 2011) with a physical simulation
engin Many studies explored hierarchical planning in hu-
man decision-making (e.g. Balaguer et al.,[2016; [Huys et al.}
2015)), and recently in social inference (Yildirim et al.|[2019).
We show that a combined hierarchical planning and physi-
cal engine model outperforms cue-based alternatives, such as
multinomial logistic regression and LSTM, in predicting hu-
man interpretations of ambiguous events. Our results suggest
the role of complex abstract physical and mentalistic concepts
in social inference.

Computational Modeling
Flatland

Flatland is a 2D simulated physical environment with mul-
tiple interacting agents and objects. Agents can have two
types of goals: (1) a personal goal g; € G, and (2) a social
goal of helping or hindering another agent. Agents are sub-
ject to physical forces, and can exert self-propelled forces to
move. Agents can also attach objects to their bodies and re-
lease them later. In the current study, agents have accurate
and explicit knowledge of the other agents’ goals. However,
the Flatland environment can be extended to scenarios with
incomplete information.

Formally, agents are represented by a decentralized
Multi-agent Markov Decision Process (Dec-MDP), i.e.,
(85,4,R;,'T;), Vi € N, where N is the number of agents, S
and A are the state set and the action set shared by all agents,
R; 1§ x 4 — Ris the agent’s reward function, Z;: § x 4 — S
is the agents’ state transition probability. The amount of force
an agent can exert, f;, defines the agent’s strength, and shapes
its dynamics in the physical environment. An agent’s state
transition probability ‘7; can be written as P(s'|s,a, f;,0;),
where 6; denotes the physical properties of the agent, other
than its strength, (e.g. mass and shape). Assuming that all
bodies have the same density, 0; is easily observable based on
visual appearance, but this assumption can be relaxed.

An agent’s reward is jointly determined by: (1) the reward
of its own goal, (2) the reward of other agents’ goals, (3) its
relationships with other agents, and (4) the cost of actions.
Formally, we define an agent’s reward as:

Ri(S,Cl):R(S,gj)+z(xin(S7gj)_C(a>7 (1)
J#

where C(a) is the cost function; o; indicates agent i’s re-
lationship with agent j, including how much agent i cares
about agent j’s goal. For a friendly relationship, o;; > 0; for

Ihttps://github.com/pybox2d/pybox2d

an adversarial one, o;; < 0; and o;; = 0 if the relationship is
neutral.

Given this physical and social setup, we now consider how
an agent could plan to achieve its goals in this environment.
Interpreting an agent’s actions would then require the inver-
sion of this planning process. A classic MDP-based approach
would prove exceedingly costly in the continuous physics of
Flatland, coupled with the agents’ composite rewards. In
this work we deal with this complexity by incorporating a
hierarchical planner inspired by the task and motion planning
(TAMP) framework (Kaelbling & Lozano-Pérez, |[2011).

Hierarchical Planning

Figure [2] shows how the hierarchical planner (HP) works.
Given an agent i’s goal, strength, relationships with other
agents, and the other agents’ goals, HP generates the best
action to take at any given state. An agent can pursue its
own goal, or the goal of another agent. HP searches for plans
I1;; = {a*}:7~! with a finite horizon of T steps for all goals
gj» Vj € N. Any g; such that j # i is a goal of another
agent j. Each plan is simulated using the physics engine,
and the agent’s cumulative reward following that plan is given
by a composite value function, V (IT;;) = Y1) Ri(s'+*,a'*7),
which incorporates the reward of its personal goal and the
weighted rewards of other agents’ personal goals.

The plan with the highest cumulative reward is selected as
the final plan generated by the HP. To better adapt to other
agents’ plans, in the current implementation HP returns only
the first action of the selected plan, and re-plans by searching
for new plans at every step. So, the plans can be frequently
adjusted according to the latest state.

To generate an optimal plan for each possible goal, the
HP adopts a two-level architecture. First, a Symbolic Plan-
ner (SP) prepares a sequence of sub-goals for a given goal.
This entails generating symbolic states from physical statesﬂ
and creating a sequence of sub-goals that reaches the final
goal. For example, a sub-goal could entail grabbing an ob-
ject, blocking a door, or moving to a specific location. In the
present study, SP used A* search to find the shortest path to
the goal in the space of symbolic states. Second, a Motion
Planner (MP) generates a sequence of actionﬂ that achieves
each sub-goals using Monte-Carlo Tree Search (MCTS) to-
gether with a physics engine. Note that alternative implemen-
tations of SP and MP may be suitable in different domains.

Formally, let n”(of-|s‘,ﬁ,{gj}je1v,{oc,-j}j#) o< eV(H,-/-) be
the plan selection policy, where o € {gi }ren is the selected
goal, and let w(al|s', f;,0!) be the policy for the selected goal,
computed by MCTS. Then, the agent’s final policy is:

a; ~mails', fi, {8} jen {0} j2i) (2)

2The symbolic states are predefined predicates: On(object, land-
mark), Reachable(agent, object), Attached(agent, object) and their
negation).

3Here the actions are forces that can be applied in eight possible
directions, grabbing or releasing an object, stopping, and no force.
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Figure 2: An illustration of an agent’s Hierarchical Planner (HP).(A) Using Symbolic Planner (SP) and Motion Planner (MP), HP optimizes
a value function that combines a personal and a social goal (helping or hindering another agent). In this example the agent has a helping
social goal. (B) Each agent replans its actions every a few steps in response to a changing state of other agents and objects. An agent may
switch goals, when the expected reward of the new goal outweighs that of the current goal. For example, the green agent first helps the red
agent to bring the blue object to the pink landmark; once it has been reached, the green agent switches to pursuing its personal goal.

where

n(a;ls', fi,{8} jen {0‘!/}#1) =
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Attributing Goals, Relationships, and Strengths

By running the HP forward we can generate arbitrary inter-
active scenarios in the Flatland environment. Such scenarios
could involve a number of objects of different sizes, shapes,
and appearances, and a number of agents with personal and
social goals. People viewing animations of this kind tend to
interpret them in terms of a narrative about the agents’ rela-
tionships, incentives, and abilities (Heider & Simmel, [1944).
Such interpretations may arise either from identifying spe-
cific cues, or from applying a more structured, theory-like
understanding of objects and agents. We formalize these two
views of human judgement using cue-based models as well
as a theory-based generative model that relies on Bayesian
inverse planning enabled by the HP and physics simulation.

Generative Social and Physical Inference (GSPI) GSPI
conducts Bayesian inference of latent variables (i.e., agents’
goals, relationships, strengths) to describe an observed social
interaction through a generative model consisting of our hi-
erarchical planner and a physics engine. For each hypothesis
of the latent variables, GSPI i) samples optimal plans w.r.t.
Eq.[2] and ii) simulates entities’ trajectories in the physics en-

gine based on the hypothesis as well as the sampled plans.
GSPI then defines the likelihood of the hypothesis by how
much the simulated trajectories deviate from the observed tra-
jectories. Combined with the priors of the latent variables,
GSPI computes the posterior of the hypothesis using Bayes’s
rule:

1 T)
)
|g17gj7ﬁ7f]7aljv(le) 'P(giagjvﬁ7fj7aij7(xji)'

“4)

Given this principle, we show how GSPI can be used for
inferring agents’ goal selection, relationships, and comparing
their relative strengths in details as fellows.

First we can calculate the posterior probability of the
agents’ goals, given observations and given the agents’ social
and physical properties:

P(glvg]7.fl)f]3aljvajl|s
P(siT

P (0 0) P( t|s st+17glagj’ﬁ7fj7alj7(le)
ZP t“ls aj, ) (ails’, fi, 0 )n’ (oils', fi,{gi- 85} i)

(tlsvfﬁ o (515", fj,{8i &} i) P(a; ) P P (0} P (0

4)
where P(s't!|s',a},d’) = e , with §*! being the
predicted next state after taking o} based on physics simu-
lation. Here B controls the agent’s proximity to the optimal
plans generated by the HP. A large 3 means that the agent will
follow the optimal plan; as B becomes smaller, it is increas-
ingly likely to deviate from the optimal plan. P(0) and P(a)
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are uniform priors.
The probability that both agents are pursuing their personal
goals in the last T steps is given by

P(Oi:gi70j gj‘s )

Z H Pij(gi,8))P z) P(f;)P(0u;)P(aij;). (6)

fisfj>%ij, 0 1
%0

The probability that agent i is pursing a social goal (helping
or hindering another agent) is given by:

Poi=gj0;=g)ls"") =
[17(25.)P(ei) P(F)P(f) P(0)P(axy).
ginfirfj,%ij,ji 1
@)
Here we discretize f and o for making the computations
tractable. We assume uniform priors for goals and strengths.
For o, we assume that P(oo=0) = P(at > 0) = P(ae < 0) =
1/3, so that there is no bias toward any type of relationship.
To infer the relationship between two agents, we first de-
rive the posterior probabilities of o;; and o.j;.

P(OL,'J',OCJ'Z"S. )
Z Plj ” j
1 gingj.fifjol, o_'

®)
Based on Eq. [8] we can derive the posterior probability of
specific relationships. E.g.,

P(Adversarial|s'T) = Z Z

(X,‘jSO,(lj,‘<0 ocij<0.ocj,-§0

P((Xij,(in|S1:T).

(€))
Finally, the expected strength difference between two
agents is given by:

Elfi— fils"T1 =Y Y. (fi— f)P(fi. i), (10)

fi i

where

P(fi, fils"") =

Y. Pij(0},05)P(8i)P(g;)P(fi) P(f})P(0ij) P(0ts0).

t giqgj~(xij~,ajiai-,alj

(11)
Cue-based models We compared the GSPI model with
three cue-based alternatives: Cue-based-1: Multinomial lo-
gistic regression based on feature statistics of the whole
video; Cue-based-2: Multinomial logistic regression based
on concatenated feature statistics of chunks of the video; Cue-
based-3: Long short-term memory (LSTM). Each cue-based
model was trained on 400 stimuli, not used in the experi-
ment. Following (Ullman et al., 2010), we used the following
cues for each agent: (1) coordinates, (2) velocity, (3) acceler-
ation, (4) relative velocity w.r.t. other entities and landmarks,

4Note that the equations here are constrained to two-agent sce-
narios for simplicity and readability, but they can be easily extended
to more general cases.

(8i)P(g;)P(fi) P(f;)P(0ij)P(0t)i).

(5) distance to other entities and landmarks, (6) whether the
agent is touching another entity. The LSTM model accepts
the sequence of these cues as input and learns motion fea-
tures by itself. For logistic regression models, we encode the
cue sequences as statistics (mean, minimum, maximum, stan-
dard deviation) to obtain motion features. Cue-based-1 used
the statistics over the whole video as input, and Cue-based-
2 concatenated statistics of short chunks of a video as input.
To train these models, we generated 400 training videos by
randomly sampling agents’ goals, relations, and strengths as
well as the environment layout, sizes and initial positions of
entities. Note that these 400 training videos were not shown
in the human experiment.

Methods

Flatland is a simple but rich environment, capable of gen-
erating many visually distinct scenes from a relatively small
number of underlying physical and social variables. Flatland
scenarios allow us to quantitatively test alternative accounts
of human physical and social reasoning. We have described
two such basic alternatives — i) a theory-like inference that re-
quires forward planning models and physical simulation for
the physical and psychology of agents in Flatland, and ii)
a cue-based alternative that relies on many separate visual
cues to map between observed social interactions and agents’
goals, relationships and strengths. We next describe an empir-
ical study of human inferences in Flatland, in order to assess
the fit of these two different models.

Procedure

The experimentE] was presented in a web browser using psi-
Turk (Gureckis et al.,[2016)). The instructions explained how
Flatland works. After reading instructions, subjects com-
pleted 3 comprehension quizzes for judging goals, relation-
ship, and strengths respectively. Subjects who failed to accu-
rately respond to all quizzes were asked to read the instruc-
tions again until they correctly responded to all quizzes. Next,
subjects responded to two practice stimuli, similar to the stim-
uli presented in the main experiment, the responses to which
were not included in the analysis. After completing the prac-
tice, subjects saw 6 stimuli and reported: (1) the goals of each
agent, (2) the relationship between agents, and (3) the relative
strength of each agent. The responses were given by selecting
the appropriate items from a multiple-choice list.

Subjects

120 subjects (mean age = 38.4; 45 female) were recruited
on Amazon Mechanical Turk and paid $1.60 for 12 minutes.
Subjects gave informed consent. The study was approved by
the MIT Institutional Review Board.

SThe exact experimental setup (screenshots)  can
be found at https://osf.i0/25nsr/?view_only=
ce34eb376d0c4f3dbf3a095bd7datb60
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Figure 3: Comparing the GSPI model’s inferences to human re-
sponses. (A) Probabilities of each of the possible agent goals given
by the model, plotted against the averaged human responses. (B)
Probabilities of each type of relationship (Neutral, Friendly, Ad-
versarial) given by the model plotted against the averaged human
responses. (C) The model’s estimate of the strength difference be-
tween the two agents against the averaged human response. (D) En-
tropy (in bits) of human goal judgements plotted against the entropy
of the model’s goal judgments. Each data point represents one stim-
ulus, and the error bars indicate the bootstrapped 95% confidence
intervals. Notably, stimuli that exhibited higher entropy (more am-
biguity) in humans were also harder for the model. (E-G) Human
and model’s inferred agents’ relationships, given ground-truth. Er-
ror bars show 95% confidence intervals. Both humans and model
correctly identified the relationships in most of the stimuli, and had
a higher degree of confusion when the ground-truth relationship was
neutral.

Stimuli

Stimuli were 30 Flatland animationsﬂ which always con-
tained three interacting bodies (shown as circles) and four
landmarks (squares placed at the four corners of the screen,
as shown in Figure [T[C). Two of the interacting bodies were
always agents and one was an object. Subjects were informed
which of the circles were agents, and which was the object.
Objects varied in mass, and agents varied in their relative
strength. Each agent always had one personal goal, which
could be one of the following: (1) moving itself to a spe-
cific landmark, (2) approaching another entity, or (3) moving
the object to a specific landmark. In addition to their per-
sonal goals, some of the agents also had social goals of either
(1) helping the other agent achieve its goal, or (2) hindering
the other agent. All animations were 10 seconds long with a
framerate of 30.

We generated a large number of stimuli using our hierar-
chical planner with randomized parameter settings, including
(1) entities’ sizes and initial positions, (2) the environment
layout, (3) agents’ strengths, goals, and their relationship. We
manually selected 30 representative examples[]

Results

The comparison of the cue-based models and the GSPI model
is summarized in Table [I, Importantly, human responses

6Stimuli can be viewed at https://www.youtube.com/
playlist?list=PLOygI9%h8RqG_yypVmlOxM18Lkcd5hbuxk

’We aimed to sample a variety of enacted scenarios, and pre-
ferred animations that could be interpreted with ambiguity to elicit
a distribution of responses over possible interpretations.

GSPI Cuel Cue2 Cue3 GT
Goal .84 .06 .09 .09 73
Relation .90 21 32 .01 77
Strength .75 .60 .63 .06 71

Table 1: Correlations of average human responses with the models
and with ground truth.

were closer to the predictions of the GSPI model than to
the ground truth. The bootstrapped inter-subject correlations
were r = .83 (SD = .02) for goals, r = .88 (SD = .03) for rela-
tionships, and r = .68 (SD = .09) for strengths, which shows
that humans made highly consistent inferences of goals and
relationships, but less consistent inferences of strengths.

We calculated goal judgements as the marginalized prob-
ability of a goal being reported in a given stimulus. Human
responses to the strength question were recorded as (-1, 0,
1), corresponding to (“weaker”, “same”, and “stronger’’). We
found that all cue-based models performed well on the train-
ing data, but poorly on the testing stimuli. Notably, Cue-
based-1 and Cue-based-2 produced good estimates of the
agents’ relative strength, suggesting that simple cues could
be useful in judging physical properties. A detailed summary
comparing the GSPI model to human responses is given in
Figure[3] showing a close match between the models’ and the
humans’ judgements. As shown in Figure 3D, human and
model also agree on which stimuli were easy (low-entropy)
and which were hard (high-entropy). The correlation between
model and human entropy was r = .41 (p = .02).

Figure |4| shows four representative stimuli along with the
corresponding human and model inferences. The model not
only recognized the ground-truth with high confidence in
most cases, but also shared similar confusion with humans
over goals and relations when the agents’ behaviors were hard
to interpret (e.g. both humans and the model were all uncer-
tain about the goals and the relationship in Figure fJE). No-
tably, subjects sometimes failed to recognize that an agent
also had a personal goal in addition to its social goal (Fig-
ure D). In contrast, in such cases the model generated high
confidence inferences over both goals.

Discussion

Our results show that human interpretations of complex so-
cial and physical multi-agent interactions can be described by
a hierarchical planner combined with a physical simulation
engine. Notably, the proposed GSPI model matches human
predictions on a number of important dimensions: (1) it can
accurately predict human responses, even in cases where sev-
eral interpretations are plausible, (2) it makes mistakes simi-
lar to human mistakes in cases when ground truth is unclear,
and (3) unlike alternative cue-based models, our GSPI model
requires few observations of behavior to reach an inference.
In contrast, cue-based models not only require a large corpus
of training data, but are also constrained to more simple inter-
active scenarios (for example, inferring an agent’s strength),
and produce less generalizable results.
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Figure 4: Representative stimuli (left) and their corresponding human and model judgment on goals and relationships (right). The red and
green circles are agents and the blue circle is an object. Here, we show the top 3 goals out of all 12 goals for each agent based on human
responses. Personal goals are coded as “X2Y”, which indicates “get entity X to location Y”’; colored squares represent landmarks; “Self”
indicates the agent itself; “Obj” means the object entity. Note that the probabilities of goals do not sum up to 1 since an agent could have 1
or 2 goals in a video. The ground-truth is highlighted by red underscore bars (the agents’ ground-truth goals in E was not among the top 3

human responses.). We include the URL links for viewing the stimuli.

The Flatland paradigm offers a convenient, automated,
and controllable way of generating a variety of social and
physical stimuli. While the present study considered two-
agent Flatland scenarios with limited goals and properties,
the framework can be extended to multiple agents, alternative
world layouts, and different physical engines. Together with
the GSPI inference engine, Flatland improves on the current
tools for studying physical inference and social attribution,
and allows researchers to study both of these phenomena at
the same time.

The model and humans sometimes disagree about the pos-
sible agents’ goals. Some disagreements occur when the
model’s confidence is high, but human confidence is low (see
the top-left dots in Figure [3]A). Individual inspection of the
stimuli in question revealed three common cases for disagree-
ment. First, human interpretations of agents’ actions are less
accurate when agents are weak, leading to noisy estimates of
goals. Second, humans sometimes report one of the agent’s
sub-goal as the final goal, and miss to notice the other goals.
Third, humans sometimes fail to recognize the personal goals
of a helping or hindering agent. Future work could study sub-

goal attribution in more detail, by asking subjects to report
all possible goals, along with their probability. Future work
could also investigate the richness of human judgements in
ambiguous stimuli, by asking subjects to informally describe
the reasoning behind their inferences. For example, in highly
ambiguous scenarios humans could rely on a library of ab-
stract structures in social situationﬂ in order to generate ex-
planations outside the space admissible by our model.

Disagreements may also happen when humans’ confidence
is high, but the model confidence is low (the bottom-center
dots in Figure B]A). Such scenarios are interesting because
they may reveal non-uniform priors that humans bring to the
table. For example, humans might assume that the agents are
friendly or adversarial by default, leading to a biased goal
inference. Alternatively, humans might place higher priors
on certain types of goals in preference to other types. Such
priors may also vary between subjects, with different subjects
exhibiting different kinds of non-uniform priors, depending

8For example, such abstract social structures could include: jeal-
ousy, game-play, sport, flirtation, bluff, disappointment, etc.



on recent experience, context, or personality. We intend to
investigate these phenomena in future work.

Lastly, in the current work we assume that both the sub-
jects, and the model, know which entities are agents or ob-
jects. This allows us to constrain the inference to goals, rela-
tionships, and strengths, for simplicity of analyzing and pre-
senting results. At the same time, telling apart agents from
objects (i.e., animacy detection), as humans do easily and
intuitively, is an interesting modelling challenge on its own.
Judging animacy may require a complex interplay of appear-
ance cues, ability to move on its own, producing the kinds of
movement expected of animate agents (e.g. breathing, shiv-
ering), as well as the interpretation of actions as intentional
and directed toward a goal. Future studies could investigate
the mental representations of such inferences, and our exper-
imental paradigm could provide an empirical and computa-
tional platform toward supporting this investigation.

A wider implication of our work, is that it demonstrates
the computational synergy between intuitive physics, hierar-
chical planning, and theory of mind. While individual cog-
nitive phenomena in these domains are traditionally consid-
ered separate domains, much of cognition likely share this hi-
erarchical, interdependent and multi-sensory structure. This
means that inferences informed by different sensory modali-
ties and mental representations produced by different cogni-
tive domains are available to each other. Our work takes a
step toward a computational approach of studying the multi-
sensory nature of the mind. We show that it is possible to
computationally model how humans interpret complex social
and physical scenarios.
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