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Abstract

In this work, we consider one-shot imitation learn-
ing for object rearrangement tasks, where an AI
agent needs to watch a single expert demonstra-
tion and learn to perform the same task in differ-
ent environments. To achieve a strong general-
ization, the AI agent must infer the spatial goal
specification for the task. However, there can
be multiple goal specifications that fit the given
demonstration. To address this, we propose a
reward learning approach, Graph-based Equiva-
lence Mappings (GEM), that can discover spa-
tial goal representations that are aligned with the
intended goal specification, enabling successful
generalization in unseen environments. Specifi-
cally, GEM represents a spatial goal specification
by a reward function conditioned on i) a graph in-
dicating important spatial relationships between
objects and ii) state equivalence mappings for
each edge in the graph indicating invariant proper-
ties of the corresponding relationship. GEM com-
bines inverse reinforcement learning and active
reward learning to efficiently improve the reward
function by utilizing the graph structure and do-
main randomization enabled by the equivalence
mappings. We conducted experiments with simu-
lated oracles and with human subjects. The results
show that GEM can drastically improve the gen-
eralizability of the learned goal representations
over strong baselines.1
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Figure 1. Illustration of our problem setup. We first (A) show a
single expert demonstration for an object rearrangement task to an
agent, and then (B) ask the agent to reach the same goal in unseen
testing environments. (C) Multiple spatial goals can interpret the
expert demonstration, each leading to a distinct task execution in
the testing environments. For instance, from left to right, the four
possible spatial goals shown here are i) triangle is to the right of
circle and to the left of square; ii) triangle is close to circle and
square; iii) triangle is to the left of circle; iv) triangle is close to
square.

1. Introduction
To build AI agents that can assist humans in real-world set-
tings, we have to first enable them to learn to perform any
new tasks defined by a human user. To achieve this, an AI
agent has to acquire two types of key abilities: i) the ability
to develop an understanding of the goal or task specifica-
tion intended by the human user and ii) the ability to exe-
cute a given goal. In this work, we aim to engineer the first
key ability of an AI agent. This ability is crucial for a broad
range of tasks such as housekeeping and manufacturing and
is therefore commonly studied in robots (Shah et al., 2018;
Yan et al., 2020; Rowe et al., 2019) and embodied AI (Puig
et al., 2021; Srivastava et al., 2022; Kapelyukh & Johns,
2022). As a foundation for these tasks, we focus on object
rearrangement, where an agent must reason about the spa-
tial goals that define a set of desired spatial relationships be-
tween objects. For instance, to set up a dinner table, one has
to know how to place the plates and utensils appropriately.

One way to train agents to perform a new object rearrange-
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ment task is to provide manual goal specification. However,
creating a manual definition for the goal requires expert
knowledge, and inaccurate definitions may cause misspecifi-
cation (Amodei et al., 2016). Another widely used paradigm
is imitation learning, in which an agent learns the task spec-
ification from demonstrations. Inferring the precise task
specification from demonstrations typically requires collect-
ing a large set of diverse demonstrations. However, diverse
demonstrations are not always available in real-world appli-
cations due to the high cost of data collection. In this work,
we instead learn from a single demonstration combined with
queries to an oracle that can provide feedback over states.
Generally, in the one-shot imitation learning setup, the objec-
tive is to learn a new task from a single demonstration after
pre-training on many tasks (Duan et al., 2017). In our one-
shot imitation learning setup, the agent watches the human
user performing the task once (Figure 1A) and learns via
active learning to perform the same task in unseen environ-
ments (Figure 1B) without pre-training on additional tasks.

While one-shot imitation learning is a convenient paradigm
for teaching new tasks to agents, it is also extremely chal-
lenging due to the fact that there could be multiple goal spec-
ifications that explain the given expert demonstration well.
For instance, consider the task illustrated in Figure 1. There
are multiple interpretations of the intended goal spatial re-
lationships based on the demonstration, each of which will
lead to a different task execution in a new environment (Fig-
ure 1C). Without a correct understanding of the true goal,
an agent cannot successfully perform the task.

To address this challenge, our work improves both i) the
representation of spatial goal specification and ii) the acqui-
sition of such representation that can reveal the true spatial
goal.

First, we represent the intended spatial goal by a composi-
tional reward function conditioned on a sparse graph (Fig-
ure 2A) where the graph indicates whether there is an im-
portant spatial relationship between a pair of objects and
each edge has a reward function implicitly describing what
the intended spatial relationship is between the correspond-
ing pair of objects. Unlike prior work on reasoning about
spatial relationships and graphical representations of goals,
we do not classify a relation out of a manually defined set of
predicates (e.g., close, above), but intend to discover those
predicates through the graph and the reward components for
the edges in the graph implicitly.

Second, we propose a novel reward learning algorithm,
Graph-based Equivalence Mappings (GEM), connecting of-
fline reward learning with active reward learning. As shown
in Figure 3, GEM consists of two phases. In the initial phase
(Figure 3A), we first learn a reward function conditioned
on a fully connected graph from the expert demonstration
using adversarial inverse reward learning (AIRL) (Fu et al.,
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Figure 2. (A) We use a compositional reward function, R, condi-
tioned on a graph, G, as the spatial goal representation. (B) For
each edge, we may apply certain state equivalence mappings for
improving representation learning to achieve a better generaliza-
tion beyond the expert demonstration. Each type of mapping in-
dicates a type of invariance of the intended spatial relationship
between a pair of objects. Thus the reward for the edge would re-
main the same after applying the state mapping. Specifically, for
the rotation-invariant mapping ϕ1, the relative orientation between
objects can be randomized while the reward remains the same; for
the scale-invariant mapping ϕ2, the change in the distance between
objects does not affect the reward.

2018) with a model-based extension, M-AIRL. This reward
function is guaranteed to provide a good fit on the states in
the expert demonstration, which offers us a set of good state-
reward pairs as a training set. However, this set is only lim-
ited to the training situation since M-AIRL penalizes states
that were not in the demonstration. Thus the initial reward
function learned from M-AIRL may not generalize well to
states that were not seen in training. To acquire new state-
reward pairs that are not covered by the expert demonstra-
tion and improve the spatial goal representations to match
with the newly acquired data, we then conduct active reward
refinement (Figure 3B) following the initial training.

Prior works on active reward learning typically collect new
state-reward training data purely based on the states gener-
ated in the queries shown to the oracle and the feedback re-
ceived from the oracle. When faced with a large state space,
this paradigm often requires a large number of queries to
acquire sufficient training data. To overcome this, we uti-
lize spatial relation invariance and reward graph structure,
resulting in a more efficient querying process. Specifically,
we aim to augment the existing training states by random-
izing each state in the existing set without changing the
corresponding reward. This can be achieved by applying
state equivalence mappings (Figure 2B) to edges, which is a
type of state transformation that identifies equivalent states.
A similar idea has been previously applied to multi-agent
policy learning for improving zero-shot generalization (Hu
et al., 2020). Here, each type of equivalence mapping indi-
cates a type of invariance for the intended spatial represen-
tation between a pair of objects. Thus, when applying valid
equivalence mappings, we can synthesize new state-reward
pairs with known rewards without the need to acquire or-
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Figure 3. Overview of GEM. The reward learning consists of two phases, offering a novel connection between (A) model-based inverse
reinforcement learning that predicts an initial reward and (B) active reward learning. Given an expert demonstration, we first initialize the
reward function conditioned on a fully connected graph (i.e., R0) using model-based adversarial inverse reinforcement learning (M-AIRL).
R0 provides a good estimation of expert demonstration state rewards with a theoretical fitness guarantee. To improve generalization
beyond states in the expert demonstration, we update the reward function iteratively. At each iteration, we propose a new graph or a new
equivalence mapping assignment for the edges in the new graph. We then finetune the reward function conditioned on the new graph using
data augmented by the new equivalence mappings. To verify the fitness of the proposed graph and the equivalence mappings, we generate
a new goal state that can differentiate the new reward R′ from the current reward R as an informative query for the oracle. Based on the
oracle feedback (i.e., whether the new goal state is acceptable), we update the current proposal, reward function, and state accordingly.
We also collect the query states as additional training data for the reward finetuning at future iterations.

acle feedback on each new state. Following this intuition,
our active reward refinement iteratively proposes a new hy-
pothesis including a new graph and new state equivalence
mappings assigned to the edges in the graph, finetunes the
reward function based on the new graph and the augmented
training set, and generates informative queries for the or-
acle to verify the hypothesis. For instance, in Figure 3B,
the edge between the square and the circle is removed in
the new graph, while the rotation-invariant mapping is pre-
served for the remaining edge. Consequently, the sampled
query moves the square away and rotates the triangle around
the circle, so that we can verify whether the removed edge
is important and whether the rotation-invariance holds for
the connected edge through this query.

We conducted experiments with a simulated oracle and with
human subjects in a 2D physics simulation environment,
Watch&Move. In each task, the goal is to move the objects
to satisfy spatial relationships intended by the oracle. We
compared GEM against recent baselines for imitation learn-
ing and active reward learning and found that GEM signifi-
cantly outperformed the baselines, both in terms of general-
izability and sample efficiency (i.e., fewer oracle queries).

In summary, our main contributions are: i) a generalizable
spatial goal representation using a compositional reward
function conditioned on a graph and state equivalence map-
pings, ii) a novel reward learning algorithm, GEM, for dis-
covering spatial goal representations by connecting inverse
reinforcement learning with sample-efficient active reward
learning, and iii) a new physics simulation environment,
Watch&Move, for evaluating one-shot imitation learning ap-
proaches, with a focus on generalization.

2. Related Work
Goal inference. One of the key aspects of the work is to
reason about the goal for a task based on the expert’s plan.
There has been rich history in goal inference building so-
cially intelligent AI systems (Baker et al., 2017; Puig et al.,
2021; Netanyahu et al., 2021; Shah et al., 2018; Yan et al.,
2020). However, prior work on goal inference typically as-
sumed a limited goal space such as a set of discrete goals
(Baker et al., 2017), a finite set of predicates (Puig et al.,
2021; Netanyahu et al., 2021; Shah et al., 2018), or a target
location (Cao et al., 2020). These assumptions greatly lim-
ited the kinds of goals a system can infer. In contrast, our
approach can discover generalizable spatial goal representa-
tions with much less restriction for the spatial goal specifi-
cation.

Inverse reinforcement learning. Most existing imita-
tion learning approaches can be categorized into behav-
ioral cloning (BC) and inverse reinforcement learning (IRL)
(Ghasemipour et al., 2020). These two types of methodolo-
gies provide two distinct learning objectives – BC aims to
directly mimic the expert policy, whereas IRL attempts to
recover the reward function that could produce the expert
policy. Intuitively, learning a reward can achieve better gen-
eralization in novel environments since the learned reward
function may still be valid in the new environment, whereas
a policy inferred by demonstrations may no longer be suit-
able when the environment distribution changes (covariate
shift) (Shimodaira, 2000). The main challenge in IRL is
that there are usually multiple rewards that can explain the
expert demonstrations (Ng et al., 2000), especially with lim-
ited demonstrations. Policies learned from IRL simultane-
ously with the reward are guaranteed to only perform well
on the expert distribution (Ghasemipour et al., 2020). State-
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only AIRL (Fu et al., 2018) is guaranteed to learn a reward
disentangled from environment dynamics, but may also suf-
fer from covariate shift. Hence, we propose a new learning
paradigm that extends IRL with graph-based active reward
learning.

One-shot imitation learning. Imitation learning has long
been a subject of interest (Schaal, 1999; Nehaniv et al.,
2002; Abbeel & Ng, 2004; Billard et al., 2004; Argall et al.,
2009). Specifically, there has been work on one-shot imita-
tion learning (Duan et al., 2017; Bonardi et al., 2020; Huang
et al., 2019; Yu et al., 2018), which often adopted a meta-
learning framework, where the objective is to learn how to
learn from a single demonstration through training with a
distribution of tasks. This can be done either through meta
policy learning (Finn et al., 2017) or meta reward learning
(Xu et al., 2019). However, existing works focused on tasks
that have a high similarity, e.g., pushing an object to dif-
ferent locations (Finn et al., 2017). They have also not ad-
dressed the generalizability of the learned policies or reward
functions to unseen environments. There are two main chal-
lenges for achieving a strong generalization in one-shot im-
itation learning: it is hard i) to learn to reach a given goal
in unseen environments and ii) to infer the true goal from a
single demonstration. In this work, we focus on the second
challenge, with the assumption of having access to a world
model and a planner that can reach any physically plausible
goal state. We believe this is a first step towards engineering
a generalizable one-shot imitation learning system.

Policy/reward learning from human feedback. In addi-
tion to learning from demonstrations, prior work has also
proposed methods for learning policies (Ross et al., 2011;
Griffith et al., 2013; Loftin et al., 2014; MacGlashan et al.,
2017; Arumugam et al., 2019; Wang et al., 2022), or reward
functions (Daniel et al., 2014; 2015; Su et al., 2016; Bıyık
et al., 2019; Cui & Niekum, 2018; Brown et al., 2019; Reddy
et al., 2020) from human feedback. This can be achieved
through queries that ask for human preferences (Christiano
et al., 2017; Brown et al., 2019) or a direct evaluation (re-
ward) on states (Ross et al., 2011; Reddy et al., 2020). In-
spired by this, our approach also uses an active reward learn-
ing scheme to improve the reward function from oracle feed-
back. However, when the state and action spaces are large,
it is difficult to obtain a sufficient amount of data from a
small number of queries. In this work, we aim to address
this by better utilizing the limited queries and oracle feed-
back. Specifically, instead of only generating trajectories or
states for the queries, we propose generalizable goal repre-
sentations and verify them through smart query generation.

3. Preliminaries
Our initial learning phase adopts adversarial inverse rein-
forcement learning (AIRL) (Fu et al., 2018), which was pro-

posed to achieve robust reward generalization for unseen
dynamics. We briefly introduce AIRL and present a model-
based extension to the original AIRL below.

3.1. Adversarial Inverse Reinforcement Learning

IRL considers an MDP process ⟨S,A, T , r, γ, ρ0⟩. S is the
state space, A is the action space, T (·|a, s) is the state tran-
sition distribution, r(s, a) is the reward function, γ is the
discount factor, and ρ0 is the initial state distribution. The
goal of IRL is to learn a reward function rθ(s, a) that can
approximate the expert policy on the given expert demon-
strations D = {Γ1, · · · ,ΓM}, where Γi = {(st, at)}Tt=0 is
a sequence of state and action pairs in a demonstration. It
achieves this objective by maximizing the likelihood of ob-
serving the expert demonstrations given the reward function.

max
θ

EΓ∼D[log pθ(Γ)], (1)

where pθ(Γ) ∝ p(s0)
∏T

t=0 p(s
t+1|st, at)eγtrθ(s

t,at) is the
likelihood of the demonstrations given the reward function.
AIRL formulates this optimization as adversarial training,
where it learns to approximate the advantage function for
the expert policy through a discriminator. The discriminator
distinguishes between generated trajectories from a learned
policy π(a|s) (as fake examples) and the expert demonstra-
tions (as real examples):

Dθ,ω(s, a, s
′) =

exp{fθ,ω(s, a, s′)}
exp{fθ,ω(s, a, s′)}+ π(a|s)

, (2)

where fθ,ω is the advantage function consisting of an approx-
imated reward function gθ as well as a shaping function hω:

fθ,ω = gθ(s, a) + γhω(s
′)− hω(s). (3)

When the reward function only depends on state s, AIRL
can guarantee that the learned reward function gθ and the
shaping function hω can approximate the ground truth re-
ward function r∗ and the ground truth value function V ∗(s)
up to a constant respectively. However, the learned reward
may not generalize well to states different from the ones
shown in the expert demonstrations.

3.2. Model-based AIRL

The original AIRL uses model-free RL training, which is
often difficult in tasks with large state and action spaces
(such as the multi-object rearrangement tasks studied in this
work). To address this issue there has been work on model-
based AIRL (Sun et al., 2021). Similarly, we propose a
simple model-based extension given a world model p(·|s, a)
learned or given by a simulator. The idea is to utilize the
shaping function h(s) in Eq. (3), which is guaranteed to
approximate the ground truth value function in the demon-
strations, combined with one-step-ahead state predication
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to define the policy in Eq. (2) instead of learning a policy π
using model-free RL:

π(a|s) =
exp{β

∑
s′ p(s

′|a, s)h(s′)}∑
a′∈A exp{β

∑
s′ p(s

′|a′, s)h(s′)}
, (4)

where β is a constant coefficient.

4. Graph-based Equivalence Mappings
As a representation of a spatial goal, a reward function can
adequately describe the fitness of a spatial configuration
w.r.t. any intended goal spatial relationships including both
logical and continuous relationships. When learned prop-
erly, the trained reward function also enables a generaliza-
tion of the corresponding goal in unseen physical environ-
ments, avoiding over-imitation, unlike direct policy imita-
tion. However, without a diverse set of demonstrations, mul-
tiple reward functions may perfectly fit the expert trajecto-
ries, and it is impossible to disambiguate the true reward
solely based on the given demonstration. To solve this, we
propose a novel active reward learning approach, Graph-
based Equivalence Mappings (GEM) that learns a compo-
sitional reward function conditioned on a sparse graph and
state equivalence mappings (Figure 2). As illustrated in Fig-
ure 3, GEM consists of two learning phases, combining both
model-based inverse RL and active reward learning. Start-
ing from the initial reward function that has a theoretical
fitness guarantee limited to the expert demonstration, GEM
iteratively refines the reward function through proposed new
graphs and state equivalence mappings and verifies the new
reward function via informative queries for an oracle. In
this section, we first introduce our compositional reward
function and then present the two-phase learning algorithm.

4.1. Compositional Reward Function as a Spatial Goal
Representation

We represent each state as s = (xi)i∈N , where N is a
set of objects, and xi is the state of object i. We indicate
the important spatial relationships for a task by a graph,
G = (N,E), where each edge (i, j) ∈ E shows that the
spatial relationship between object i and object j is part of
the goal specification. Here, we focus on pairwise spatial
relationships, but it is possible to extend this to higher-order
relationships. As shown in Figure 2A, given the graph and
the state, we define a compositional reward function as a
spatial goal representation to implicitly describe the goal
spatial relationships for a task:

R(s,G) =
1

|E|
∑

(i,j)∈E

r(xi, xj). (5)

Spatial relationships may have certain invariance properties.
For instance, relationships describing the desired distance

between two objects are invariant to the rotation applied to
this pair of objects. By utilizing correct invariance proper-
ties, we can transform a state seen in the training environ-
ment to a new state that has the same reward, as they repre-
sent the same spatial relationship. Essentially this process
augments the data by domain randomization (Tobin et al.,
2017). To model different invariance properties, we intro-
duce a set of possible state equivalence mappings {ϕk}k∈K

as shown in Figure 2B, where each type of mapping ϕk can
transform the states of a pair of objects (i, j), and ensures
that the reward component for that edge does not change,
i.e., r(xi, xj) = r(ϕk(xi, xj)). When applying a mapping,
we may randomize the invariance aspect of the state to sam-
ple a new state. For instance, for applying the rotation-
invariant mapping once, we randomize the relative orienta-
tion between the two objects for the state transformation.
Please refer to Appendix A.1 for more details.

We denote the mappings assignment for all the edges in a
graph as I = {δi,j,k}(i,j)∈E,k∈K , where δi,j,k is a binary
variable indicating whether ϕk can be applied to edge (i, j).
The state mapping for the whole graph is then defined as
Φ(s, I), where it recursively applies mappings assigned to
each edge. Note that we transform the state for each edge
independently so that the transformation of one edge will not
affect the state of other edges that share a common node with
this edge. For more details, please refer to Appendix A.1.

In this work, we consider two types of mappings illustrated
in Figure 2B as a gentle inductive bias provided by domain
knowledge, but other types of mappings can also be applica-
ble to different domains. Critically, we only provide a set of
candidate mappings but do not assume to have the knowl-
edge of which mappings can be applied to a specific spatial
relationship, unlike (Hu et al., 2020). We instead learn to
assign valid mappings to each edge through active reward
learning.

These equivalence mappings allow us to augment the states
from the expert demonstration and those acquired through
queries, creating an infinite number of states that have equiv-
alent spatial relationships.

4.2. Two-Phase Reward Learning

4.2.1. INITIAL REWARD LEARNING

Given the expert demonstration Γ, we first use M-AIRL
described in Section 3 to train an initial reward function
R0(s,G0; θ0) conditioned on a fully connected graph G0,
where θ0 are the parameters of the initial reward function.
This initial reward function provides a good reward approxi-
mation for all the states in Γ, approaching the ground truth
with a constant offset.
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Algorithm 1 Active Reward Refinement
Input: G0, I0, R0, SD, Lmax
S+ ← {sT }, S− ← ∅, I0 ← ∅
First reach the final state of the expert demonstration,
denoted as s0q
for i = 1 to Lmax do
G′, I ′ ∼ Q(Gl, I l|Gl−1, I l)
Train θ′ based on Eq. (7)
Sample a new query state s′q based on Eq. (8)
Reach s′q and get oracle feedback o
if o = acceptable then
Gl ← G′, I l ← I ′, slq ← s′q , θl ← θ′

S+ ← S+ ∪ {s′q}, SD ← (s′q, r
T )

else
Gl ← Gl−1, I l ← I l−1, slq ← slq , θl−1 ← θl−1

S− ← S− ∪ {s′q}
Move objects back to sl−1

q

end if
end for

4.2.2. ACTIVE REWARD REFINEMENT

To improve the generalization of the initial reward function
to states beyond expert states, we then aim to discover a
graph structure, G, and equivalence mapping assignment
for the edges in the graph, I , through active learning, and
refine the reward function based on the inferred graph and
the equivalence mappings.

The active reward refinement is outlined in Algorithm 1.
For the reward refinement, we consider three training sets,
(1) all states in the expert demonstrations and their rewards
based on R0, SD = {(st, rt = R0(st|G0, θ0))}Tt=0, (2) a
positive state set initialized with the final state of the expert
demonstration S+, and (3) a negative state set, S−. By
querying, we collect more states for the positive set and the
negative set based on the oracle judgment. We know the
corresponding reward of the states in SD based on R0, and
assume that rewards for states in S+ have higher rewards
than any state in S−.

The main purpose of the queries is to find equivalently good
goal states that are visually different from the goal state
shown in the expert demonstration. To this end, at the start of
the active learning phase, we first reach the final state of the
expert demonstration. We can achieve this by applying the
learned approximated value function (the policy is defined
in Eq. (4)).

At each iteration l, we first propose a new graph G′ and a
new equivalence mapping assignment I ′ based on a proposal
distribution Q(G′, I ′|Gl−1, I l). We describe the design of
this proposal distribution in Appendix A.2. We then finetune
the reward function conditioned on the proposal to obtain
new parameters θ′, which defines a new reward function

R(s|G′; θ′). To do that, we use two types of optimization.
First is reward regression based on the state and reward pairs
(s, r) ∈ SD. Since we obtained equivalence states from the
proposed mappings, the reward function can be optimized
so that for each state s in SD, all of its equivalent states
will have the same reward as s itself. We formally define a
regression loss as follows

L(θ)reg = E(s,r)∼SD
[(R(Φ(s, I ′)|G′; θ)− r)2]. (6)

The second type of optimization is reward ranking. Specif-
ically, we optimize the reward function so that the reward
of a state s+ ∈ S+ is higher than the reward of any state
s− ∈ S−. This gives us the second loss:

L(θ)rank = Es+∼S+,s−∼S− [|(R(Φ(s−, I
′)|G′; θ)−

R(Φ(s+, I
′)|G′; θ)|+].

We then combine these two loss functions to update the
parameters of the reward function:

θ′ = argmin
θ
L(θ)reg + L(θ)rank. (7)

Based on the new reward, we generate a query to reflect the
change in the hypothesis and in the corresponding reward
function. The query is a goal state s′q sampled starting
from the current state (i.e., sl−1

q ). Intuitively, this new state
should have a high reward based on the new reward function
but a low reward based on the previous reward function at
iteration l − 1. Formally, s′q is sampled by

s′q = argmax
s∈N (sl−1

q )

R(s|G′; θ′)− λR(s|Gl−1; θl−1), (8)

whereN (sl−1
q ) is the set of all reachable states starting from

sl−1
q and λ is a constant coefficient.

After reaching the new query state s′q, we query for oracle
feedback by asking if slq is an acceptable state that satisfies
the goal. If acceptable, we then accept the new proposal
as well as the new reward function, and augment S+ with
the new query s′q. We also assume that s′q has a similar re-
ward as the final demonstration state. Thus SD can also be
augmented with (s′q, r

T ), where rT is the reward of the fi-
nal demonstration state according to the initial reward func-
tion. If the oracle feedback is negative, then we reject the
new proposal and the corresponding reward function, move
back to the last accepted state (i.e., sl−1

q ), and augment S−
with s′q . We repeat this process until reaching the maximum
number of iterations Lmax. Alternatively, we can also termi-
nate the process when no sparser graphs have been accepted
for a certain amount of iterations.

After the two learning phases, we apply the learned reward
function to the test environments by sampling a goal state
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based on the reward function. Since we prefer sparse graphs,
we use the sparsest graphs accepted in the recent iterations.
When there are multiple accepted graphs with the same
number of edges, we use the one that has the most mappings
assigned to its edges.

5. Experiments
5.1. Watch&Move Environment

We propose a one-shot imitation learning environment,
Watch&Move. Inspired by recent machine learning bench-
marks based on 2D physics engines (Lowe et al., 2017;
Bakhtin et al., 2019; Allen et al., 2020; Netanyahu et al.,
2021), we create a 2D physics simulation for Watch&Move,
where objects can be moved w.r.t. physics dynamics and
constraints. This simulation environment provides an ab-
straction of real-world object rearrangement tasks2.

We design 9 object rearrangement tasks in the Watch&Move
environment (Figure 4 shows 3 example tasks). Each task
consists of an expert demonstration and a new testing en-
vironment. The goals of the proposed tasks cover a range
of object relationships that are common in the real world as
well as in the prior work on object rearrangement tasks (as
summarized in Table 1).

Successful performance in the testing environment in
Watch&Move requires an agent to rearrange the objects
to satisfy all spatial goal relationships while minimizing
the overall change in the environment. This requires that
the agent correctly identify the necessary relationships for
each task. We use a reward function to measure the task
completion and the displacement of all objects: Reval =
1(sT satisfies the goal) − 0.02

∑
i∈N ||x0

i − xT
i ||2, where

x0
i and xT

i are the first and last states of object i in a test-
ing episode respectively, and sT is the overall final state in
the testing episode. Please refer to Appendix A.6 for more
details about the tasks and the environment.

5.2. Baselines and Ablations

We compare GEM with M-AIRL (i.e., the initial reward
learning alone) and with ReQueST (Reddy et al., 2020), a
recent active reward learning approach that estimates a re-
ward that can generalize to environments with different ini-
tial state distributions. For a fair comparison, we use the
same graph-based reward function for ReQueST and initial-
ize the reward for using the expert demonstration. For de-
tails, please refer to Appendix A.7. For the ablated study, we
also evaluate variants of GEM, including i) GEM without
minimizing the previous reward for the query generation, ii)
GEM with a fully connected graph (no new graph proposals),
iii) GEM without applying any equivalence mappings, and

2We illustrate this in Appendix B.1.

iv) GEM trained with randomly generated queries. During
testing, given the reward function learned by each method,
we sample a goal state by maximizing the reward and min-
imizing the displacement. We then evaluate sampled goal
states based using our reward metric defined in Section 5.1.
Finally, we provide an oracle performance based on the op-
timal goal states generated by the oracle in the testing envi-
ronments.

5.3. Results with a Simulated Oracle

We first conducted an evaluation on 8 Watch&Move tasks
with a simulated oracle that gives feedback for a query
based on whether the state in the query satisfies the goal
definition. We report the reward obtained in the testing
environment using models trained with different methods
with different numbers of queries in Figure 5. The results
show that the initial reward trained by M-AIRL failed to
reach the goal in the testing environment. However, with
the active reward refinement enabled by GEM, the reward
function was greatly improved. We also found that the
graphs and the equivalence mapping assignments inferred by
GEM provided meaningful representations of the intended
spatial relationships for the tasks (we visualize the inferred
graphs and equivalence mapping assignment, and example
queries in Appendix B). In comparison, ReQueST and the
random query variant failed to learn a generalizable reward
function for all tasks. Other ablated variants could achieve
success in some tasks but not in all 8 tasks, which verified
the importance of i) minimizing the previous reward for
the query sampling and ii) the joint inference of the graph
structure and the equivalence mapping assignment.

5.4. Human Experiment

To evaluate how well GEM can work with real human ora-
cles, we conducted a human experiment on Task 9, where
we recruited three human participants as oracles. The par-
ticipants gave their consent, and the study was approved by
an institutional review board.

At each trial, a participant was instructed to verify whether
a query state generated by an AI agent satisfied the ground
truth goal of Task 9 (see Figure 6). Each participant in-
teracted with GEM and ReQueST once and provided feed-
back for 30 queries for each algorithm. Each GEM query
took about 1 minute due to training. We plot the rewards
in the testing environment in Figure 6, which demonstrates
that the reward function trained by GEM reaches a good
performance in the new environment within 30 iterations,
significantly outperforming the reward function trained by
ReQueST. GEM also correctly inferred the necessary edge
(the pair of circles) and its corresponding invariance type
(rotation-invariant).



Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning

Demo (initial state) Demo (final state) Test Env

Goal: blue trapezoid is to the left of blue rectangle; green 
triangle is close to blue rectangle

Task 3
Demo (initial state) Demo (final state) Test Env

Goal: blue circle is above orange circle

Task 8
Demo (initial state) Demo (final state) Test Env

Goal: the distance between green triangle and red square is 
~5 units; purple circle is to the right of orange square

Task 6

Figure 4. Example Watch&Move tasks. For each task, we create an expert demonstration that moves objects to a state that satisfies the
goal and provide a test environment that is different from the initial state in the expert demonstration. The edges visualize the relationships
that are part of the goal definition; they are not present in the expert demonstration and are thus unknown to the agent. We also show the
goal for each task. The distance in Watch&Move is measured in units. As a reference, the radius of the circle is 0.8 units. The exact
definitions of the goal relationships are summarized in Table 1 (Appendix A.6).

Task 1 Task 2 Task 3 Task 4

Task 5 Task 6 Task 7 Task 8

Figure 5. Testing performance of different methods trained with a simulated oracle on 8 Watch&Move tasks (Task 1 to 8). We plot the
reward metric in the testing environment using the learned model as a function of the number of queries. The dashed line indicates the
reward for an optimal plan generated by the oracle. Note here the M-AIRL baseline provides the initial rewards for GEM and all of its
variants and is not updated with the queries. We ran each method using three random seeds and show the standard errors as the shaded areas.

6. Conclusion
We have proposed a reward learning algorithm, GEM, for
performing one-shot generalization for an object rearrange-
ment task. In GEM, spatial goal relationships are repre-
sented by a graph-based reward function and state equiva-
lence mappings assigned to the edges of the graph. GEM in-
fers the graph structure and the equivalence mapping assign-
ment by combing an initial reward learning using inverse
reinforcement learning and a sample efficient active reward
refinement. For evaluation, we designed a 2D physics sim-
ulation environment, Watch&Move, and compared GEM
against strong baselines on multiple tasks. We also con-
ducted a human experiment to verify whether GEM can

work with humans. The experimental results show that
GEM was able to discover meaningful spatial goal represen-
tations. It significantly outperformed baselines, achieving a
better generalization in unseen testing environments as well
as a greater sample efficiency. We believe that GEM is a
step towards solving the extremely challenging problem of
one-shot imitation learning.

The success of GEM in simulation shows potential for real-
world applications. First, GEM achieves a much greater
sample efficiency and generalizability compared with SOTA
(ReQueST), making it possible to learn the reward with hu-
mans. Second, there are several ways to apply GEM to learn
task specifications that involve more objects with a reason-
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Demo (final state)

Test Env

Goal: green circle is 
close to orange circle

Task 9A B

Figure 6. (A) Illustration of Task 9 used in the human experiment.
(B) Testing performance of GEM and ReQueST trained with three
human oracles for Task 9. The dashed line indicates the reward
for an optimal plan generated by the oracle in the test environment.
The shaded areas indicate the standard errors.

able amount of queries. The bottleneck of the sample effi-
ciency is the number of edges in a graph. Since real-world
tasks typically require a sparse graph, we can use heuristics
(e.g., an object is usually only related to neighboring ob-
jects) to directly remove unlikely edges without queries. We
can also take a hierarchical approach where we first learn re-
wards for subgraphs (e.g., a dining set) and then apply GEM
to learn the final reward (e.g., multiple sets for a party of
four) where each node is a subgraph. Finally, since our re-
ward representation and the learning algorithm only require
generic object states (e.g., positions, orientations), it is pos-
sible to learn rewards in different state spaces for different
domains (such as shapes in a 3D space rather than shapes in
a 2D space). We intend to study the real-world applications
of GEM in the future.

The present work has a few limitations. First, we are only
focusing on pairwise relationships between objects and rep-
resenting them through two types of invariances. In the fu-
ture, we intend to learn higher-order relationships by en-
abling message passing in the graphs and introducing ad-
ditional types of invariance. Second, for real-world appli-
cations, we need to improve proposal sampling so that it
can infer the graph structure and the equivalence mapping
assignment more efficiently for a large number of objects.
We can potentially achieve this by using language instruc-
tions to guide the inference. For instance, a human user can
provide a language description of the task in addition to the
physical demonstration to help achieve a better understand-
ing of the task.
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A. Implementation Details
A.1. State Equivalence Mappings

Applying a mapping to an edge once. When applying a mapping to an edge, we randomly sample a variable necessary
for the mapping. For the the rotation-invariant mapping, ϕ1(x1, x2), we sample a random angle d ∼ Uniform(−π, π), and
rotate i around j by the angle of d. For the scale-invariant mapping ϕ2, we randomly sample a scale ρ ∼ Uniform(0.1, 10.0),
and move i so that its distance from j changes by the scale of ρ while the relative orientation from i to j remains the same.

State transformation given all mappings. For each graph, there is a corresponding mapping assignment for all edges
I = {δijk})(i,j)∈E,k∈K . We apply a mapping ϕk to edge (i, j) when and only when δijk = 1. If multiple mappings are
assigned to an edge, they will be applied recursively. E.g., if ϕ1 and ϕ2 are assigned to (i, j), the final state transformation
for this edge is ϕ2(ϕ1(xi, xj)). Let x̃ij be the transformed edge, then the final transformed state is Φ(s, I) = {x̃ij}(i,j)∈E ,
and the corresponding reward becomes:

R(Φ(s, I)|G) =
1

|E|
∑

(i,j)∈E

r(x̃ij). (9)

Note that since the state transformations are applied to each edge independently, any change in one edge will not affect other
edges. During reward finetuning, we apply state transformation based on the proposed mapping assignment to each batch,
so that the trained reward function reflects the intended invariance represented in the assigned equivalence mappings for
each edge.

Additionally, we assume that the absolute coordinates of the objects do not matter in the goal specifications. Therefore, we
also apply a random shift to all objects’ coordinates after applying the state equivalence mappings (i.e., moving all objects
together without changing their relative positions).

A.2. Proposal Sampling

Each proposal consists of a new graph and a new equivalence mapping assignment. Therefore, there are two general types
of proposal sampling – (1) graph sampling and (2) equivalence mapping assignment sampling. We use a prior probability
qtype to decide the type of sampling for each iteration. At each iteration, we first sample u ∼ Uniform(0, 1). If u < qtype, we
choose to sample a new equivalence mapping assignment; otherwise, we sample a new graph. For 3-object tasks, we use
qtype = 0.2; for 4-object tasks, we use qtype = 0.5.

To sample a new graph, we can either add an edge or remove an edge. We define the chance of removing an edge as qremove.
Then we sample u ∼ Uniform(0, 1). When u < qremove, we sample one of the edges from Gl−1 to remove; otherwise, we
randomly add an edge that does not exist in Gl−1. Note that we consider undirected graphs in this work; we also avoid
removing all edges to ensure a valid graph-based reward function. For all tasks, we use qremove = 0.5.

To sample a new equivalence mapping assignment, we uniformly sample an edge (i, j) ∈ E and a type of mapping k ∈ K,
and change the corresponding assignment, i.e., δ′ijk = 1− δl−1

ijk .

A.3. Network Architecture

The discriminator reward and value networks are implemented by a graph-based architecture, as opposed to the MLP
architecture used in the original AIRL version. The input is the observation representation s and graph G. We construct edge
representations by concatenating every pair of object representations in the observation. We then apply 4 x (fully connected
layers + ReLU) to each edge representation. We apply a final fully connected layer to each edge embedding to output a
single value for each edge. The final reward is the average edge value only for edges in G.

A.4. Training Details and Hyperparameters

Model-based state-based AIRL: We build upon an AIRL implementation (Wang et al., 2020) and add a model-based
generator. For each task, M-AIRL is executed for 500k generator steps, the expert batch size is the length of the expert
demonstrations. For the model-based policy, we set β = 0.3 in Eq. (4). The discriminator is updated for 4 steps after every
model-based generator execution. The model-based generator samples approximately 2k steps on each iteration.

Query reward finetuning: We apply 5k network updates per query iteration. For optimizing the network, we use Adam
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Figure 7. Illustration of all 9 Watch&Move tasks. For each task, we show the demonstration, the testing environment, and the goal
definition. We also show the goal relationships by visualizing the corresponding edges.

optimizer (Kingma & Ba, 2014) with a learning rate of 0.0003. For each update, we sample a batch of 16 states for the
regression loss and a batch of 16 pairs of positive and negative states for the reward ranking loss.

Query selection: we set λ = 0.2 in Eq 8.

Random query variant: we always assume a fully connected graph and do not assign equivalence mappings to the edges.
We collect the positive and negative sets and refine the reward function using the same loss function defined in Eq. (7).

A.5. Sampling Goal States in Testing

During testing, we sample a goal state, s∗ = (x∗
i )i∈N , by jointly maximizing the learned reward and minimizing the

displacement. I.e.,

s∗ = argmax
s=(xi)i∈N

R(s,G)− 0.02
∑
i∈N

||x0
i − xi||2. (10)

For the experiments using the simulated oracle, we use the reward corresponding to the sparsest graph accepted that has been
accepted up until the current iteration. For the human experiments, we directly use the reward accepted at each iteration so
that the results are more resilient to the noise in participants’ responses.

Since this work focuses on learning goals, we directly evaluate feasible sampled goal states in the experiments. However, it
is also possible to evaluate an episode using a planner to reach the sampled goal states.

A.6. Watch&Move Environment

Figure 7 illustrates the setup (the expert demonstration, the test environment, and the goal description) for each Watch&Move
task. The demonstrations of these tasks present various sources of confusion. For instance, there can be irrelevant objects
(e.g.,the purple trapezoid and the red circle in Task 8) or goal objects that are never moved in the demonstration due to
their initial states being satisfactory (e.g., the blue trapezoid and the blue rectangle in Task 3). Expert demonstrations were
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Table 1. Definition of goal relationships in Watch&Move tasks. For reference, the radius of a circle is 0.8 units.

PAIRWISE GOAL RELATIONSHIP DEFINITION

CLOSE [(SRIVASTAVA ET AL., 2022)] OBJECTS DISTANCE < 2.5 UNITS
LEFT/RIGHT [(JOHNSON ET AL., 2017; YAN ET AL., 2020)] ANGLE BETWEEN OBJECTS AND X AXIS < 0.1π

ABOVE/BELOW [(YAN ET AL., 2020)] 0.4π < ANGLE BETWEEN OBJECTS AND Y AXIS < 0.6π
DIAGONAL BOTH COORDINATES OF ONE OBJECT > OTHER’S

DISTANCE X OBJECTS DISTANCE WITHIN 0.5 UNIT BUFFER AROUND X
AT LEAST WITHIN DISTANCE X OBJECTS DISTANCE > X

created with a planner introduced in (Netanyahu et al., 2021), with a length ranging from 8 to 35 steps.

The state space in Watch&Move is represented by s ∈ RN×13 where N is the number of objects in the environment. 13
dimensions are composed of the coordinate of the object center, the object’s angle, and one hot encodings of the object’s
shape and color. The action space is discrete, containing 11 possible actions per object (8 directions, turning right and left
and stopping), and the object id. The action space is proportional to the number of objects. We use PyBox2D3 to simulate
the physical dynamics in the environment.

The goal relationships used to create Watch&Move are specified in Table 1. These could be easily extended to any pairwise
spatial relation, such as touching, covering, no contact, orientation, etc.

A.7. ReQueST

ReQueST (Reddy et al., 2020) is a method for estimating a reward ensemble that can safely generalize to environments with
different initial state distributions. ReQueST generates queries from a generative model that optimizes four objectives. Each
state in each query receives accepted or rejected feedback from an oracle and is used as a positive or negative example in
reward training. To ensure a fair comparison with our approach, we implement ReQueST with the following changes.

• The original method does not use an expert demonstration, therefore we pre-train the ensemble reward functions with
the expert demonstration.

• The reward architecture is similar to ours, where the final edge embeddings are sum-pooled and fed to a fully connected
layer followed by softmax for the classification. Note that here we only have two classes – neutral and good.

• The original paper learns a world model from random sampling in the environment. We use the ground truth world
model provided by the physics simulation, similar to GEM.

• Each query is of length 1 (as in the pointmass environment in ReQueST) sampled similarly to the AIRL generator
sampling in GEM. Starting from the final state of the expert demonstrations, each query is sampled relative to the last
sampled point, matching with the query generation procedure in GEM.

We use an ensemble of 4 rewards (as in the pointmass environment in ReQueST), and train them using the Adam optimizer
with a learning rate of 0.0003. We have 1k pre-training steps and 10 training steps per every 4 queries.

B. Additional Results
B.1. Evaluation in a Real-World Task

To show the connection between Watch&Move tasks and real-world tasks, we use VirtualHome (Puig et al., 2018; 2021),
a realistic virtual household simulation platform, to instantiate Task 5 in a real work setting – setting up a desk for a left-
handed person, i.e., a book in the front of a notepad and a pen on the left of and close to the notepad. In Figure 8, we show
the reward trained by GEM on the original Task 5 can also achieve success in this real-world task which shares the same
ground truth goal with Task 5 but requires the rearrangement of real-world objects.

3https://github.com/pybox2d/pybox2d
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Initial State of the Testing Environment A Sampled Goal State Using the Learned Reward

Figure 8. A real-world task simulated in VirtualHome that has the same goal specification as Task 5. Specifically, the task is to set up a
desk for a left-handed person to take notes while reading a book. We visualize the testing environment and the sampled goal state for this
real-world task using the reward function learned by GEM for Task 5. The sampled goal state satisfies the true goal specification while
minimizing the displacement of the objects.

Task 1 Task 2 Task 3 Task 4 Task 5

Task 6 Task 7 Task 8 Task 9

Figure 9. Illustration of the inferred graphs and equivalence mapping assignments as well as the corresponding query states that lead
the proposal acceptance for all 9 tasks (from one of the three runs). The colors of the edges indicate the assigned mappings. Black: no
mapping is assigned; red: the rotation-invariant mapping is assigned; blue: the scale-invariant mapping is assigned; purple: both the
rotation-invariant and the scale invariant mappings are assigned.

B.2. Learning Results

We show the inferred graphs and the equivalence mapping assignments for all 9 tasks in Figure 9. The inferred graphs
correctly identified the goal relationships. The assigned equivalence mappings also revealed the invariance properties of the
intended spatial relationships in most cases.

Figure 10 depicts typical queries that are sampled by GEM to verify the proposed graphs and the equivalence mapping
assignment. The examples here demonstrate how the informative queries were able to help differentiate two different reward
functions.

B.3. Qualitative Results

Figure 11 shows the sampled goal states using the reward functions learned by GEM. These goal states not only satisfy the
goal specifications, but are also efficient (small displacement compared to the initial states in the testing environments).
This demonstrates that the sampled goal states are not simply copying the final state of the expert demonstration but indeed
reflect the intended spatial relationships.
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A B C

Figure 10. (A)-(C) are example queries showing the effect of the new graph and equivalence mapping assignment. Each example first
shows the state and proposal before the query, and then shows the new proposal and the sampled query state. The colors of the edges
indicate the assigned mappings. Black: no mapping is assigned; red: the rotation-invariant mapping is assigned; blue: the scale-invariant
mapping is assigned; purple: both the rotation-invariant and the scale-invariant mappings are assigned. The colors of the boxes indicate
oracle feedback (red: reject, green: accept). In (A), an edge was removed, and the irrelevant object was consequently placed far away
from the remaining objects. The example in (B) shows that when the scale-invariant mapping was assigned to an edge, the sampled query
changed the distance between the objects connected by that edge while generally preserving the relative orientation between the two. On
the other hand, when the rotation-invariant mapping was assigned as in (C), one of the objects was rotated around the other connected
object and there was little change in the distance between the two objects.
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Figure 11. The testing environments and the sampled goal states based on the reward functions learned by GEM for the corresponding
tasks.


