
Supplementary Material
AGENT: A Benchmark for Core Psychological Reasoning

Tianmin Shu 1 Abhishek Bhandwaldar 2 Chuang Gan 2 Kevin A. Smith 1 Shari Liu 1 Dan Gutfreund 2

Elizabeth Spelke 3 Joshua B. Tenenbaum 1 Tomer D. Ullman 3

RGB Depth Segmentation

Figure 1. Example RGB frame, depth map, instance segmentation
map provided in AGENT.

Wall Door

Ramp Platform

Chasm Bridge

Extended SetBasic Set

Figure 2. The basic set and the extended set of object shapes and
obstacles in AGENT.

A. Dataset Details
A.1. Multi-modal Input

In additional to the ground-truth states and object labels,
we also provide RGB frames, depth maps, and instance
segmentation maps for all videos in AGENT as shown in
Figure 1.

A.2. Statistics

There are two sets of the object shapes and obstacles in
AGENT – a basic and an extended set (as depicted in Fig-
ure 2). In AGENT, there are 1100 trials generated with
the basic set, and the remaining ones are generated with
the extended. This split enables us to conduct evaluation

1Massachusetts Institute of Technology 2MIT-IBM Watson
AI Lab 3Harvard University. Correspondence to: Tianmin Shu
<tshu@mit.edu>.

of generalization to novel shapes and obstacles unseen in
training (see Section D.2).

Videos in AGENT are rendered with 3 background wall
textures and 7 floor textures (as shown in Figure 3).

Table 1 summarizes the number of trials in each type in
AGENT for the training, validation, and testing sets.

B. Model Implementation Details
B.1. BIPaCK

Planner. We devise an RRT∗-based planner, which first
searches for the most efficient path from the initial position
to the target position, then computes the force needed to
move the agent along the path. For computing the cost
between two positions, sa, s′a, we first compute the force
needed to move from sa, s′a. When sa and s′a are on the
same surface (on the ground, a ramp, or a platform), we
compute the force needed to move in the direction from sa
to s′a at a constant speed. In practice, we set the constant
speed to be the average speed of agents in the training trials.
When moving from sa to s′a requires an elevation in the
vertical direction, such as jumping over a wall or a chasm,
or jump onto a platform, we derive the minimum vertical
force needed to reach s′a without colliding into the wall /
platform, or fall into a chasm, while maintaining a constant
speed for the horizontal motion vjump

h = 1.3. We define
a collision check condition for the expansion in RRT∗, as
illustrated in Figure 4, so that it is allowed to go from one
side of a wall or chasm and reach to the other side, or go
from the ground and land onto a platform, but it is not
allowed to land onto a wall or in a chasm.

Physics parameters. For the physics parameters, we con-
sider coordinate transformation, gravity, friction, densities
of entities, and time unit (how long a step in the video cor-
respond to one simulation step in PyBullet). Most of these
parameters have little effect on the final accuracy as the
remaining parameters can compensate their effects (e.g., the
large gravity could be offset by a lower cost weight for the
vertical forces), so we set them to be constant in all scenar-
ios. In particular, we set the gravity to be 9.81, densities

AGENT: A Benchmark for Core Psychological Reasoning

Table 1. The number of trials for each type in AGENT.
Set Goal Preferences Action Efficiency Unobs. Cost-Reward All

1.1 1.2 1.3 1.4 All 2.1 2.2 2.3 2.4 2.5 All 3.1 3.2 All 4.1 4.2 All
Train 120 160 120 160 560 80 80 80 160 80 480 160 240 400 240 240 480 1920
Val 30 40 30 40 140 20 20 20 40 20 120 40 60 100 60 60 120 480
Test 60 80 60 80 280 40 40 40 80 40 240 80 120 200 120 120 240 960

Background Wall Textures Floor Textures

Figure 3. Background wall and floor textures in AGENT.

Invalid expansionValid expansion (moving on a surface) Valid expansion (jumping)

Figure 4. Illustration of valid and invalid expansions in our RRT∗-based planner.

of all moveable entities to be 1 (note that we also assume
that obstacle blocks are always immobile), and time unit to
be 5 ms per simulation step. In addition, the 3D states in
the original videos have a different coordinate system than
the one in PyBullet. For this, we have to determine which
axis in the original coordinate system corresponds to the
vertical axis in PyBullet (the mapping of the two horizontal
axes do not matter in our approach). We achieve this by
setting the axis which has the least amount of change in the
agents’ trajectories (since they mainly travel horizontally).
Finally, we need to search for the friction from a fixed range
{0, 0.05, 0.1, 0.15, 0.2} (we define the friction as a constant

force applied to an agent moving on any surface in PyBul-
let). In our experiments, a friction between 0 and 0.1 result
in a similar performance.

Agent parameters. As discussed in the main paper, we
search for the best reward and cost function for an agent.
In this work, we set the cost function to be C(sa, s′a) =
w>f = whfh + wvfv, where fh and fv are the horizontal
and vertical force the agent needs to move from sa to s′a.
We always set wh = 1, and consider a finite set for wv,
i.e., {0.1, 0.2, 0.3, 0.5, 1.0, 10.0}. We assume a continuous
range for the rewards of goal objects, i.e., rg ∈ (0, 100.0],
∀g ∈ G.

AGENT: A Benchmark for Core Psychological Reasoning

MLP

Position x

Position y

Position z

Yaw

Pitch

Roll

Camera Position x

Camera Position y

Camera Position z

Camera Yaw

Camera Pitch

Camera Roll

ResNet
34

Mask
R-CNN

…

Seg. Mask of Entity i

3D bbox of Entity i
and the camera parameters

Width

Height

Length

Figure 5. Network architecture of the derender.

Sampling. For each test video, we sample 10 trajectories
to compute score. Using 10 parallel processes, on a 16-
core CPU with 64 GB RAM, it takes 1-3 s to compute the
surprising score for a test video.

B.2. ToMnet-G

Network architecture. Each GNN consists of N nodes;
each node has an input, vi = (xi, ai), where xi is the cen-
ter of the 3D bounding box xi, and ai is the appearance
information, including the object label, the width, length,
and height of the 3D bounding box, and the orientation of
the bounding box. The node input is encoded by φv(vi) =
[φxv(xi), φ

a
v(ai)], where both φxv and φav are a 32-dim fully-

connected (FC) layer. The edge between node i and j is en-
coded by a 64-dim FC layer, φe(vi, vj). For the agent node,
we connect all other entities to it and aggregate the edge em-
beddings by a sum-pool. Concatenated with the embedding
of the agent node itself, we get [φv(vi),

∑
j 6=i φe(vi, vj)],

which is passed to a 64-dim FC layer to get the final agent
node embedding φagent([φv(vi),

∑
j 6=i φe(vi, vj)]). For a

familiarization video k, this is then passed to an LSTM with
64 hidden units to get a encoding of the video ekfam (i.e., the
last latent state of the LSTM). By a sum-pool over the en-
coding of all familiarization videos, we get echar =

∑
k e

k
fam.

For a test video, the agent node embedding is concatenated
with echar and passed to two 64-dim FC layers, followed by
an LSTM with 64 hidden units. The hidden state of this
LSTM becomes emental. Concatenating emental and echar, we
predict the displacement of the agent in one step δx with an
FC layer. δx is then used to update xi in the agent node’s
input. We predict the movement of the agent until the end
of the test video.

Training. We train the network using Adam (Kingma & Ba,
2014), with a batch size of 16, and a learning rate of 0.001.

C. Derendering for Visual Perception
In order to test the performance of baseline models that only
have access to the videos, we introduce a visual perception
front-end. This derenderer model extracts the 3D states of
each entity in a video over time, which are then used as the
inputs to BIPaCK and ToMnet-G.

Network architecture. Figure 5 shows the architecture of
the derender, which first obtains instance segmentation from
a video frame using Mask R-CNN (He et al., 2017), and then
recognizes the 3D bounding of each entity and the camera
parameters based the mask of each entity, using a ResNet-34
(He et al., 2016) and a two fully-connected layers (which
are 256-dim and 15-dim respectively). In particular, we
have 11 object labels for the instance segmentation: agent,
obstacle, 8 goal object color codes (each represents a unique
object identity defined by its color code), and occluder. This
design ensures that we can reconstruct the rough 3D scene
without overfitting to certain object shapes in the training
data, and the approximated scenes should be sufficient for
the downstream psychological reasoning tasks.

Training. We adopt a two-phase training procedure: we
first finetune Mask R-CNN (which is pretrained on Ima-
geNet; Deng et al. 2009) using the ground-truth segmen-
tation masks, and then train the remaining part based on
segmentation masks from the fixed Mask R-CNN. We sam-
ple 36,000 frames from the training trials of all types as the
training set, and 14,000 frames from the validation trials as
the validation set. For both training stages, we use Adam
with a learning rate of 0.000067, and a batch size of 160.

AGENT: A Benchmark for Core Psychological Reasoning

Table 2. Model performance based on derendering results. ‘All’ indicates performance of models trained on all concepts.

C
on

di
tio

n Method Goal Preferences Action Efficiency Unobs. Cost-Reward All

1.1 1.2 1.3 1.4 All 2.1 2.2 2.3 2.4 2.5 All 3.1 3.2 All 4.1 4.2 All

A
ll ToMnet-G .53 .56 .47 .56 .54 .45 .70 .45 .73 .15 .52 .55 .35 .43 .50 .57 .53 .51

BIPaCK .77 .73 .80 .65 .73 .60 .65 .85 .50 .70 .63 .45 .62 .55 .63 .75 .69 .65

Table 3. The standard deviation of the human performance.
Goal Preferences Action Efficiency Unobs. Cost-Reward All

1.1 1.2 1.3 1.4 All 2.1 2.2 2.3 2.4 2.5 All 3.1 3.2 All 4.1 4.2 All
SD .05 .05 .11 .03 .06 .08 .05 .09 .06 .11 .09 .10 .06 .08 .09 .10 .10 .08

D. Additional Results
D.1. The Variance of Human Performance

We report the standard deviations of human performance as
shown in Table 3. The results suggest that the variance of
the human performance is relatively small and thus validates
the data as well as the experimental procedure.

D.2. Generalization to Unseen Shapes and Obstacles

In addition to the four generalization tests, we also evalu-
ate the models’ performance on trials generated with the
extended set shown in Figure 2 when only trained on trials
synthesized from the basic set. Even when we provide the
ground-truth bounding boxes of all entities, ToMnet-G’s
averaged accuracy still drops to 0.57, whereas BIPaCK-
achieves an accuracy of 0.95. Although ToMnet-G did not
have the opportunity to encode these objects during its train-
ing (as opposed to BIPaCK, for which the encoding into
simple shapes is fixed), this nonetheless highlights the need
for generalizable object representations when faced with
novel physical environments.

D.3. Results Based on Derendering

The averaged IoU (Intersection over Union) between the 3D
bounding boxes generated by the derender and the ground-
truth is 0.07 (SD=0.11). This low IoU is mainly caused by in-
accurate center position and orientation estimations. Given
the noisy derendering results, we evaluate the ToMnet-G and
BIPaCK trained on all types and all scenarios, as reported
in Table 2. Without the ground-truth 3D states, the perfor-
mance of both models drops significantly. However, more
advanced derenderers with better position and orientation
estimates could ameliorate this drop.

D.4. Qualitative Results

We visualize some typical failures examples of both ToMnet-
G and BIPaCK in different generalization tests in Figure 6,

where we show the predicted agent trajectories and the
ground-truth agent trajectories in the expected test videos,
indicating failure modes of both models. Note that both
models have access to the ground-truth 3D states of the
objects and obstacles.

ToMnet-G: violations of physics. While ToMnet-G can
predict that an agent will travel towards its goal as efficiently
as possible, it can ignore constraints and predict that the
object will take non-physical paths (e.g., passing through
solid obstacles; Figure 6ABDH).

ToMnet-G: inefficient paths. ToMnet-G sometimes pre-
dicts inefficient paths (e.g., jumping unnecessarily when the
obstacle is out of the way; Figure 6G).

ToMnet-G: incorrect goal selections. ToMnet-G can
make erroneous goal predictions, e.g., selecting no clear
goal for the agent (Figure 6CE), or predicting the wrong
goal (Figure 6DF).

BIPaCK: mis-estimates of cost. In some situations, BI-
PaCK will incorrectly estimate the costs of moving hori-
zontally vs. jumping, and thus will, for instance, select a
longer path around an obstacle rather than a short hop over
it (Figure 6H).

References
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,

L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask r-
cnn. In Proceedings of the IEEE international conference
on computer vision, pp. 2961–2969, 2017.

AGENT: A Benchmark for Core Psychological Reasoning
G
T

To
M
ne
t-G

BI
Pa
C
K

E G3: single type (trained on Type 4.2), Type 4.1 F G3: single type (trained on Type 4.1), Type 4.2

C G2: leave one scenario out, Type 1.1 D G2: leave one scenario out, Type 1.3

A G1: leave one type out, Type 2.5 B G1: leave one type out, Type 2.3
G
T

To
M
ne
t-G

BI
Pa
C
K

G
T

To
M
ne
t-G

BI
Pa
C
K

G
T

To
M
ne
t-G

BI
Pa
C
K

G G4: single scenario (trained on Scenario 3: UC), Type 2.2 H G3: single type (trained on Type 2.1), Type 2.3

Figure 6. Qualitative results of failure examples in different generalization tests. Here we show approximated scenes where objects and
agents are represented by spheres and the obstacles are recreated with cubes. The agent is always represented by the red sphere. All
examples are the models’ prediction or the ground-truth (GT) agent behaviors in the expected test videos.

AGENT: A Benchmark for Core Psychological Reasoning

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

